ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wekerle, Claudia; Wang, Qiang; von Appen, Wilken-Jon; Danilov, Sergey; Schourup-Kristensen, Vibe; Jung, Thomas (2017): Eddy-Resolving Simulation of the Atlantic Water Circulation in the Fram Strait With Focus on the Seasonal Cycle. Journal of Geophysical Research: Oceans, 122(11), 8385-8405, https://doi.org/10.1002/2017JC012974
    Publication Date: 2023-03-16
    Description: Eddy driven recirculation of Atlantic Water (AW) in the Fram Strait modifies the amount of heat that reaches the Arctic Ocean, but is difficult to constrain in ocean models due to very small Rossby radius there. In this study we explore the effect of resolved eddies on the AW circulation in a locally eddy-resolving simulation of the global Finite-Element-Sea ice-Ocean-Model (FESOM) integrated for the years 2000-2009, by focusing on the seasonal cycle. An eddy-permitting simulation serves as a control run. Our results suggest that resolving local eddy dynamics is critical to realistically simulate ocean dynamics in the Fram Strait. Strong eddy activity simulated by the eddy-resolving model, with peak in winter and lower values in summer, is comparable in magnitude and seasonal cycle to observations from a long-term mooring array, whereas the eddy-permitting simulation underestimates the observed magnitude. Furthermore, a strong cold bias in the central Fram Strait present in the eddy-permitting simulation is reduced due to resolved eddy dynamics, and AW transport into the Arctic Ocean is increased with possible implications for the Arctic Ocean heat budget. Given the good agreement between the eddy-resolving model and measurements, it can help filling gaps that point-wise observations inevitably leave. For example, the path of the West Spitsbergen Current offshore branch, measured in the winter months by the mooring array, is shown to continue cyclonically around the Molloy Deep in the model, representing the major AW recirculation branch in this season.
    Keywords: AWI_PhyOce; File content; File format; File name; File size; FRAM; Fram Strait; Fram-Strait; FRontiers in Arctic marine Monitoring; Physical Oceanography @ AWI; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven | Supplement to: Wang, Qiang; Danilov, Sergey; Jung, Thomas; Kaleschke, Lars; Wernecke, Andreas (2016): Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends. Geophysical Research Letters, 43(13), 7019-7027, https://doi.org/10.1002/2016GL068696
    Publication Date: 2023-03-16
    Description: Northern Hemisphere sea ice from a Finite-Element Sea-Ice Ocean Model (FESOM) 4.5 km resolution simulation carried out by researchers from Alfred Wegener Institute (AWI), Germany. Concentration is shown with color; thickness is shown with shading. A global 1 degree mesh is used, with the "Arctic Ocean" locally refined to 4.5 km. South of CAA and Fram Strait the resolution is not refined in this simulation. The animation indicates that the 4.5 km model resolution helps to represent the small scale sea ice features, although much higher resolution is required to fully resolve the ice leads. The animation is created by Michael Böttinger from DKRZ (https://www.dkrz.de).
    Keywords: Arctic; DATE/TIME; File content; File format; File size; pan-Arctic; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-13
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 292 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H; Juricke, Stephan; Jung, Thomas (2017): A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates. Journal of Geophysical Research: Oceans, 21 pp, https://doi.org/10.1002/2016JC012513
    Publication Date: 2023-05-12
    Description: We present four melt climatology estimates based on a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. We simulate drift and lateral melt using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. The climatology estimates based on simulations of small (SMA), 'small-to-medium'-sized (MED12 & MED123), and small-to-giant icebergs (ALL) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. The four monthly melt climatologies [mm/day] are available as netCDF files with 1°x1° spatial resolution and can be used, e.g., for sensitivity studies with uncoupled sea ice-ocean models, or as spatio-temporal templates for the redistribution of land ice from the Antarctic ice sheet over the Southern Ocean in climate models.
    Keywords: File content; File format; File name; File size; pan-Antarctica; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-24
    Description: CO2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, the emission to space is higher than the surface emission; and the greenhouse effect of CO2 is around zero or even negative, which has not been discussed so far. We investigated this in detail and show that for central Antarctica an increase in CO2 concentration leads to an increased long-wave energy loss to space, which cools the Earth-atmosphere system. These findings for central Antarctica are in contrast to the general warming effect of increasing CO2.
    Keywords: Antarctica; Baseline Surface Radiation Network; BSRN; Monitoring station; MONS; South Pole; SPO
    Type: Dataset
    Format: 226 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-24
    Description: ERA-Interim reanalysis data and data of the Hadley Centre Global Environmental Model version 2 (HadGEM2) are compared with continuous meteorological observations of near-surface wind and temperature carried out for more than 30 years at Neumayer station, situated on the Ekstro¨m Ice Shelf of Antarctica. Significant temperature correlations between Neumayer climate and the climate of both the interior of the Antarctic continent and oceanic regions north of Neumayer are investigated using observational data and model data. Mean sea level pressure fluctuations at Neumayer can be connected to changes in the Southern Annular Mode (SAM). Shortcomings in the ERA-Interim reanalysis data with spurious trends of up to 7 C over 31 years are identified at several places in Antarctica. Furthermore, it is shown that katabatic winds in both the ERA-Interim reanalysis data and in the HadGEM2 climate model are underrepresented in frequency and speed, presumably due to the problems in representing topography in these relatively coarse resolution models. This may be one reason for the positive 2m air temperature bias of 3 C in the models at Neumayer station. The results of this study reemphasize that climatic trends in regions with a low station density can not be assessed solely from model data. Thus, it is absolutely necessary to maintain polar observatories such as Neumayer station to quantify climate change over the Southern Ocean and Antarctica.
    Keywords: Baseline Surface Radiation Network; BSRN; Dronning Maud Land, Antarctica; Georg von Neumayer; GVN; Monitoring station; MONS; Neumayer_based; NEUMAYER III
    Type: Dataset
    Format: 372 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...