ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (1)
  • Other Sources  (16)
Collection
  • Books  (1)
  • Articles  (29)
  • Other Sources  (16)
Classification
Branch Library
Reading Room Location
  • 11
    facet.materialart.
    Unknown
    In:  [Other] In: Goldtschmidt Conference, 01.09, Melbourne, Australia .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-03-06
    Description: The global variability in nickel (Ni) isotope compositions in ferromanganese crusts is investigated by analysing surface samples of 24 crusts from various ocean basins by MC–ICPMS, using a double-spike for mass bias correction. Ferromanganese crusts have View the MathML source isotopic compositions that are significantly heavier than any other samples thus far reported (−0.1‰ to 0.3‰), with surface scrapings ranging between 0.9‰ and 2.5‰ (relative to NIST SRM986). There is no well resolved difference between ocean basins, although the data indicate somewhat lighter values in the Atlantic than in the Pacific, nor is there any evidence that the variations are related to biological fractionation, presence of different water masses, or bottom water redox conditions. Preliminary data for laterite samples demonstrate that weathering is accompanied by isotopic fractionation of Ni, which should lead to rivers and seawater being isotopically heavy. This is consistent with the slightly heavier than average isotopic compositions recorded in crusts that are sampled close to continental regions. Furthermore, the isotopic compositions of crusts growing close to a hydrothermal source are clustered around ∼1.5‰, suggesting that hydrothermal fluids entering the ocean may have a Ni isotopic composition similar to this value. Based on these data, the heavy Ni isotopic compositions of ferromanganese crusts are likely due to input of isotopically heavy Ni to the ocean from continental weathering and possibly also from hydrothermal fluids. A depth profile through one crust, CD29-2, from the north central Pacific Ocean displays large variations in Ni isotope composition (1.1–2.3‰) through the last 76 Myr. Although there may have been some redistribution of Ni associated with phosphatisation, there is no systematic difference in Ni isotopic composition between deeper, older parts and shallower, younger parts of the crust, which may suggest that oceanic sources and sinks of Ni have largely remained in steady state over the Cenozoic. Additionally, the isotope profile is in agreement with a profile of Mn concentration through the same crust. This implies a link between the Ni isotopic composition recorded in ferromanganese crusts and the release of Ni into the ocean through hydrothermal activity. This supports the conclusions drawn from surface data, that Ni isotope ratios in ferromanganese crusts are largely controlled by the isotopic compositions of the Ni oceanic input sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-12-06
    Description: Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe–Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe–Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ϵ205Tl greater than +2.5, whereas anoxic sediments have ϵ205Tl of less than −1.5 (ϵ205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ϵ205Tl values of oxic sediments probably reflect authigenic Fe–Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe–Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe–Mn crusts distributed globally (ϵ205Tl=+12.8±1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe–Mn crusts that are older than 25 Ma show a systematic increase of ϵ205Tl with decreasing age, from about +6 at 60–50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ϵ205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic emanations. Alternatively, the Tl isotope trends may reflect the increasing importance of Tl fluxes to altered ocean crust through time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-11-15
    Description: The iron (Fe) isotope compositions of 37 hydrogenetic ferromanganese deposits from various oceans have been analysed by MC-ICPMS; they permit the construction of a global map of Fe isotopic values. The isotopic compositions range between −1.2 and −0.1‰ in δ57FeIRMM14. Averages for the Atlantic and the Pacific are −0.41 and −0.88‰, but their standard deviations are identical (0.27, 1σ) and the data very largely overlap. No correlation is found with Pb or Nd isotope compositions and there is no evidence that the observed oceanic Fe isotopic heterogeneity is directly controlled by variations in continental sources. The small quantities of Fe that can be introduced from hydrothermal sources render as unlikely the possibility that the isotopic variations reflect variable proportions of continental and hydrothermal Fe, as recently proposed. The more likely explanation is that the variations are induced locally within the ocean. The exact sources of fractionation remain unclear. Likely possibilities are the dissolution and reprecipitation processes that liberate Fe from sediments during anoxic events, dissolution in surface waters or processes occurring during growth of the crusts
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-11-15
    Description: Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-01-09
    Description: Results are presented for the first in-depth investigation of Tl isotope variations in marine materials. The Tl isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe–Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of Tl isotope compositions in these samples exceeds the analytical reproducibility (±0.05‰) by more than a factor of 40. Hydrogenetic Fe–Mn crusts have ϵ205Tl of +10 to +14, whereas seawater is characterized by values as low as −8 (ϵ205Tl represents the deviation of the 205Tl/203Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 104). This ∼2‰ difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of Tl onto ferromanganese particles. An equilibrium fractionation factor of α∼1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable Tl isotope compositions that range between the values obtained for seawater and hydrogenetic Fe–Mn crusts. The variability in ϵ205Tl in diagenetic nodules appears to be caused by the adsorption of Tl from pore fluids, which act as a closed-system reservoir with a Tl isotope composition that is inferred to be similar to seawater. Nodules with ϵ205Tl values similar to seawater are found if the scavenging of Tl is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ϵ205Tl and Mn/Fe. This trend is thought to be due to the derivation of Tl from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ϵ205Tl are produced by the adsorption of Tl from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal manganese deposits with high Mn/Fe and high ϵ205Tl are generated by scavenging of Tl from colder, more distal hydrothermal fluids. Under such conditions, adsorption is associated with significant isotope fractionation, and this produces deposits with higher ϵ205Tl values coupled with high Mn/Fe.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-02-01
    Description: Highlights • Geological characteristics of deep-sea minerals vary widely. • Deep-sea mineral occurrences differ in their resource potential. • Sizes of most favorable areas of formation influence exploration efforts. Abstract Marine minerals such as manganese nodules, Co-rich ferromanganese crusts, and seafloor massive sulfides are commonly seen as possible future resources that could potentially add to the global raw materials supply. At present, a proper assessment of these resources is not possible due to a severe lack of information regarding their size, distribution, and composition. It is clear, however, that manganese nodules and Co-rich ferromanganese crusts are a vast resource and mining them could have a profound impact on global metal markets, whereas the global resource potential of seafloor massive sulfides appears to be small. These deep-sea mineral commodities are formed by very different geological processes resulting in deposits with distinctly different characteristics. The geological boundary conditions also determine the size of any future mining operations and the area that will be affected by mining. Similarly, the sizes of the most favorable areas that need to be explored for a global resource assessment are also dependent on the geological environment. Size reaches 38 million km2 for manganese nodules, while those for Co-rich crusts (1.7 million km2) and massive sulfides (3.2 million km2) are much smaller. Moreover, different commodities are more abundant in some jurisdictions than in others. While only 19% of the favorable area for manganese nodules lies within the Exclusive Economic Zone of coastal states or is covered by proposals for the extension of the continental shelf, 42% of the favorable areas for massive sulfides and 54% for Co-rich crusts are located in EEZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...