ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 76 (1988), S. 501-506 
    ISSN: 1432-2242
    Keywords: Norway spruce ; Picea abies ; Modified LP medium ; Somatic embryogenesis ; dl-Buthionine sulf-oximine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Embryogenic callus developed in 55% of the mature embryo explants of Norway spruce (Picea abies L.) growing on a LP medium minus the amino acids and sugars (except sucrose). This is the highest reported yield of embryogenic callus from mature embryos of P. abies that has ever been reported. Callus induction from either the middle or the end of the hypocotyl of the embryos began after 2–3 weeks. Three types of calli were recovered: (a) globular, (b) light green-compact, (c) white mucilaginous. Only the white mucilaginous calli were embryogenic. The globular and light green-compact calli never become embryogenic, even after several subcultures. The development of somatic embryos was accomplished on half-strength macro-elements of NSIII medium containing 1 μM α-naphthaleneacetic acid, 1 μM abscisic acid, and 3% sucrose. The addition of 10−7 M buthionine sulfoximine to the medium increased the development of somatic embryos by three fold. These results suggest that there is a great potential for increasing the frequency and development of somatic embryos in P. abies. Careful selection of the genotype and modification of the culture medium is required.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-01
    Print ISSN: 1341-6979
    Electronic ISSN: 1610-7403
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-01
    Description: Plants generally have the highest regenerative ability because they show a high degree of developmental plasticity. Although the basic principles of plant regeneration date back many years, understanding the cellular, molecular, and physiological mechanisms based on these principles is currently in progress. In addition to the significant effects of some factors such as medium components, phytohormones, explant type, and light on the regeneration ability of an explant, recent reports evidence the involvement of molecular signals in organogenesis and embryogenesis responses to explant wounding, induced plant cell death, and phytohormones interaction. However, some cellular behaviors such as the occurrence of somaclonal variations and abnormalities during the in vitro plant regeneration process may be associated with adverse effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases, regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review covers the most important factors involved in the process of plant regeneration and discusses the mechanisms by which plants monitor this process.
    Electronic ISSN: 2223-7747
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...