ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14)
Collection
  • Articles  (14)
  • 11
    Publication Date: 1997-12-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Passive open-top devices have been proposed as a method to experimentally increase temperature in high-latitude ecosystems. There is, however, little documentation on the efficacy of these devices. This paper examines the performance of four open-top chambers for altering temperature at six sites in the Arctic and Antarctica. Most of the heating effect was due to daytime warming above ambient; occasional night-time cooling below ambient, especially of air temperatures, depressed mean daily temperature. The mean daily temperatures at four arctic sites were generally increased by 1.2–1.8 °C; but occasionally, temperature depressions also occurred. Under optimal conditions at the antarctic site (dry soils, no vegetation, high radiation) mean daily soil temperatures were increased by +2.2 °C (–10 cm) to +5.2 °C (0 cm). Protection from wind may play a more important role than temperature per se in providing a favourable environment for plant growth within open-top devices. Wind speed had a generally negative impact on mean daily temperature. Daily global radiation was both positively and negatively related to chamber temperature response. The effect of chambers on snow accumulation was variable with the Alexandra Fjord site showing an increased accumulation in chambers but no difference in the date of snowmelt, while at Latnjajaure in a deep snowfall site, snowmelt occurred 1–2 weeks earlier in chambers, potentially increasing the growing season. Selection of a passive temperature-enhancing system requires balancing the temperature enhancement desired against potential unwanted ecological effects such as chamber overheating and altered light, moisture, and wind. In general, the more closed the temperature-enhancing system, the higher is the temperature enhancement, but the larger are the unwanted ecological effects. Open-top chambers alter temperature significantly and minimize most unwanted ecological effects; as a consequence, these chambers are a useful tool for studying the response of high-latitude ecosystems to warming.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1573-5052
    Keywords: δ15N ; Desert shrubs ; Nitrogen uptake ; Rain ; Rapid response ; Water uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A field experiment was conducted at the Jornada Long-Term Ecological Research (LTER) site in the Chihuahuan Desert of New Mexico to compare the rapidity with which the shrubs Larrea tridentata and Prosopis glandulosa utilized water, CO2 and nitrogen (N) following a simulated summer rainfall event. Selected plants growing in a roughly 50-m2 area were assigned to treatment and control groups. Treatment plants received the equivalent of 3 cm of rain, while no supplemental water was added to the control plants. Xylem water potential (Ψx) and net assimilation rate (Anet) were evaluated one day before and one and three days after watering. To monitor short-term N uptake, soils around each plant were labeled with eight equally distant patches of enriched 15N before watering. Each tracer patch contained 20 ml of 20 mM 15 NH4 15NO3 (99 atom%) solution applied to the soil at 20 cm from the center of the plant at soil depths of 10 and 20 cm. Nitrogen uptake, measured as leaf δ15N, was evaluated at smaller time intervals and for a longer period than those used for Ψx and Anet. Both Anet and Ψx exhibited a significant recovery in watered vs. control Larrea plants within 3 days after the imposition of treatment, but no such recovery was observed in Prosopis in that period. Larrea also exhibited a greater capacity for N uptake following the rain. Leaf δ15N was five-fold greater in watered compared to unwatered Larrea plants within 2 days after watering, while foliar δ15N was not significantly different between the watered and unwatered Prosopis plants during the same period. Lack of a significant change in root 15 NO− 3 uptake kinetics of Larrea, even three days after watering, indicated that the response of Larrea to a wetting pulse may have been due to a greater capacity to produce new roots. The differential ability of these potential competitors in rapidly acquiring pulses of improved soil resources following individual summer rainfall events may have significant implications for the dynamic nature of resource use in desert ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 62 (1998), S. 654-662 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Carex spp.), water track, tussock tundra (intertussock), and riparian. The spatial distribution and temporal variation of soil mineral N, microbial biomass, soil C availability, and C turnover were soil type dependent. During the growing season, the concentration of soil NH- 4-N decreased in tussock tundra soils but increased in lichen heath soils. Soil C availability at all locations was the highest at the beginning of the growing season and declined thereafter. The C availability index (CAI) and the potential C turnover rate increased as soils became wetter. Tussock-forming tundra soil was generally colder than other sites and had high C/N ratios, low amounts of N, and a low potential C turnover index, and therefore, was the least biologically active type. In contrast, water track was the most biologically active site in the sequence and had the highest C and N availability, the highest potential C turnover index, and the highest microbial biomass C and N. The mosaic of diverse plant communities and soil types that comprise arctic landscapes necessitates that accurate estimates of large-scale C or N budget can only be made by integration of all types of plant communities and soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...