ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 825-840, doi:10.1175/JTECH-D-19-0145.1.
    Description: The study of ocean dynamics and biophysical variability at submesoscales of O(1) km and O(1) h raises several observational challenges. To address these by underway sampling, we recently developed a towed profiler called the EcoCTD, capable of concurrently measuring both hydrographic and bio-optical properties such as oxygen, chlorophyll fluorescence, and optical backscatter. The EcoCTD presents an attractive alternative to currently used towed platforms due to its light footprint, versatility in the field, and ease of deployment and recovery without cranes or heavy-duty winches. We demonstrate its use for gathering high-quality data at submesoscale spatiotemporal resolution. A dataset of bio-optical and hydrographic properties, collected with the EcoCTD during field trials in 2018, highlights its scientific potential for the study of physical–biological interactions at submesoscales.
    Description: Authors would like to acknowledge Melissa Omand, Ben Pietro, and Jing He for their valuable input during the design phase of the EcoCTD, as well as for their support for deploying the EcoCTD in the field. We are grateful to Eva Alou, Andrea Carbonero, and John Allen for providing calibrated data from the shipboard CTD. Authors would also like to thank Don Peters along with Dynamics System Analysis Ltd. for facilitating access to ProteusDS and providing support in using the software. We are grateful to the crew of the RV Armstrong and NRV Alliance for their support in the field. Development of the EcoCTD is supported by the Office of Naval Research (ONR) through the CALYPSO Departmental Research Initiative (Grant N000141613130). Advanced field testing was supported by Woods Hole Oceanographic Institution internal funding. MATLAB routines for data processing are publicly available at https://github.com/mfreilich1/ecoctd_processing.
    Description: 2020-11-08
    Keywords: Fronts ; Upwelling/downwelling ; Vertical motion ; Data processing ; Profilers ; oceanic ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Nezlin, N. P., Dever, M., Halverson, M., Leconte, J., Maze, G., Richards, C., Shkvorets, I., Zhang, R., & Johnson, G. Accuracy and long-term stability assessment of inductive conductivity cell measurements on Argo Floats. Journal of Atmospheric and Oceanic Technology, 37(12), (2020): 2209-2223, https://doi.org/10.1175/JTECH-D-20-0058.1.
    Description: This study demonstrates the long-term stability of salinity measurements from Argo floats equipped with inductive conductivity cells, which have extended float lifetimes as compared to electrode-type cells. New Argo float sensor payloads must meet the demands of the Argo governance committees before they are implemented globally. Currently, the use of CTDs with inductive cells designed and manufactured by RBR, Ltd., has been approved as a Global Argo Pilot. One requirement for new sensors is to demonstrate stable measurements over the lifetime of a float. To demonstrate this, data from four Argo floats in the western Pacific Ocean equipped with the RBRargo CTD sensor package are analyzed using the same Owens–Wong–Cabanes (OWC) method and reference datasets as the Argo delayed-mode quality control (DMQC) operators. When run with default settings against the standard DMQC Argo and CTD databases, the OWC analysis reveals no drift in any of the four RBRargo datasets and, in one case, an offset exceeding the Argo target salinity limits. Being a statistical tool, the OWC method cannot strictly determine whether deviations in salinity measurements with respect to a reference hydrographic product (e.g., climatologies) are caused by oceanographic variability or sensor problems. So, this study furthermore investigates anomalous salinity measurements observed when compared with a reference product and demonstrates that anomalous values tend to occur in regions with a high degree of variability and can be better explained by imperfect reference data rather than sensor drift. This study concludes that the RBR inductive cell is a viable option for salinity measurements as part of the Argo program.
    Description: Author Dr. G. Maze was supported by the EARISE project, a European Union’s Horizon 2020 research and innovation program under Grant Agreement 824131, Call INFRADEV-03-2018-2019: Individual support to ESFRI and other world-class research infrastructures. We acknowledge Susan Wijffels, who provided advice on reference climatologies, coordinated access to the data from Argo Australia float 5904925, and provided ship CTD data to evaluate the initial accuracy of the float. Toshio Suga and Shigeki Hosoda provided ship CTD data for assessing the initial accuracy of Japan Argo floats 2903005 and 2903327. We thank Zenghong Liu for coordinating access to ship CTD data and continued discussion regarding RBRargo CTD accuracy and stability. We thank IFREMER for providing us access to ADMT-CTD and ADMT-Argo reference datasets.
    Keywords: Pacific Ocean ; Salinity ; Instrumentation/sensors ; Profilers, oceanic ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...