ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (56)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (56)
Collection
  • Articles  (56)
Journal
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 16 (1984), S. 263-285 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 21 (1989), S. 137-166 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-01-01
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-01-01
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1977-12-05
    Description: Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener–Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade. Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings. © 1977, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1978-12-13
    Description: This paper is concerned with small amplitude vortical and entropic unsteady motions imposed on steady potential flows. Its main purpose is to show that, even in this unsteady compressible and vortical flow, the perturbations in pressure p’ and velocity u can be written as p’ = ρ0D0ϕ/Dt and u = ϕ + u(I) respectively, where D0/Dt is the convective derivative relative to the mean potential flow, u(I) is a known function of the imposed upstream disturbance and ϕ is a solution to the linear inhomogeneous wave equation formula omitted with a dipole source term ρ0−1 ▽ρ0u(I) whose strength ρ0u(I) is a known function of the imposed upstream distortion field. (Here c0 and ρ0 denote the speed of sound and density of the background potential flow.) This equation is used to extend Hunt's (1973) generalization of the ‘rapid-distortion’ theory of turbulence developed by Batchelor & Proudman (1954) and Ribner & Tucker (1953). These theories predict changes occurring in weakly turbulent flows that are distorted (by solid obstacles and other external influences) in a time short relative to the Lagrangian integral scale. The theory is applied to the unsteady supersonic flow around a corner and a closed-form analytical solution is obtained. Detailed calculations are carried out to show how the expansion at the corner affects a turbulent incident stream. © 1978, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1979-04-27
    Description: It is shown that the pressure and velocity fluctuations of the unsteady motion on a transversely sheared mean flow can be expressed entirely in terms of the derivatives of two potential functions. One of these is a convected quantity (i.e. it is frozen in the flow) that can be specified as a boundary condition and is related to a transverse component of the upstream velocity field. The other can be determined by solving an inhomogeneous wave equation whose source term is also a convected quantity that can be specified as a boundary condition in any given problem. The latter is related to the curl of the upstream vorticity field. The results are used to obtain an explicit representation of the three-dimensional gust-like or hydrodynamic motion on a transversely sheared mean flow. It is thereby shown that this motion is ‘driven’ entirely by the two convected quantities alluded to above. The general theory is used to study the interaction of an unsteady flow with a scmi-infinite plate embedded in a shear layer. The acoustic field produced by this interaction is calculated in the limits of low and high frequency. The results are compared with experimental one-third octave sound pressure level radiation patterns. The agreement is found to be excellent, especially in the low frequency range, where the mean-flow and convective effects are shown to have a strong influence on the directivity of the sound. © 1979, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1980-06-01
    Description: An alternative to Hunt's (1973) extension of classical rapid distortion theory is used to calculate the turbulence downstream of a rapid contraction. This problem was originally studied by Batchelor & Proudman (1954) and Ribner & Tucker (1953), but their analyses were restricted to flows in which the characteristic turbulence scales were small compared to the spatial scales of the mean flow (usually the characteristic dimension of the apparatus). We now consider the case where the turbulence scale can have the same magnitude as the mean-flow spatial scale. Relatively simple formulae are obtained by calculating the turbulence only in the downstream region where the mean flow is no longer affected by the potential field of the contraction. The results are then further simplified by assuming that the contraction is large and expanding in inverse powers of the contraction ratio. The calculations show that effects of finite turbulence scale can be quite significant. We also obtain some important new results for small-scale turbulence by expanding the solutions in inverse powers of the turbulence spatial scale. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1983-02-01
    Description: The method of matched asymptotic expansions is used to study the generation of Tollmien-Schlichting waves by free-stream disturbances incident on a flat-plate boundary layer. Near the leading edge, the motion is governed by the unsteady boundary-layer equation, while farther downstream it is governed (to lowest order) by the Orr-Sommerfeld equation with slowly varying coefficients. It is shown that there is an overlap domain where the Tollmien-Schlichting wave solutions to the Orr-Sommerfeld equation and appropriate asymptotic solutions of the unsteady boundary-layer equation match, in the matched-asymptotic-expansion sense. The analysis explains how long-wavelength free-stream disturbances can generate Tollmien-Schlichting waves of much shorter wavelength. It also leads to a set of scaling laws for the asymptotic structure of the unsteady boundary layer. © 1983, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-04-01
    Description: We consider a nominally uniform flow over a semi-infinite flat plate. Our analysis shows how a small streamwise disturbance in the otherwise uniform flow ahead of the plate is amplified by leading-edge bluntness effects and eventually leads to a small-amplitude but nonlinear spanwise motion far downstream from the leading edge of the plate. This spanwise motion is then imposed on the viscous boundary-layer flow at the surface of the plate – causing an order-one change in its profile shape. This ultimately reduces the wall shear stress to zero – causing the boundary layer to undergo a localized separation, which may be characterized as a kind of bursting phenomenon that could be related to the turbulent bursts observed in some flat-plate boundary-layer experiments. © 1992, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...