ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (405)
  • Physics  (398)
  • Computer Science  (48)
Collection
  • Articles  (405)
Journal
  • 1
    Publication Date: 2015-05-01
    Description: We present a method to produce mock galaxy catalogues with efficient perturbation theory schemes, which match the number density, power spectra and bispectra in real and in redshift space from N -body simulations. The essential contribution of this work is the way in which we constrain the bias parameters of the patchy -code. In addition to aiming at reproducing the two-point statistics, we seek the set of bias parameters, which constrain the univariate halo probability distribution function (PDF) encoding higher order correlation functions. We demonstrate that halo catalogues based on the same underlying dark matter field with a fix halo number density, and accurately matching the power spectrum (within 2 per cent) can lead to very different bispectra depending on the adopted halo bias model. A model ignoring the shape of the halo PDF can lead to deviations up to factors of 2. The catalogues obtained additionally constraining the shape of the halo PDF can significantly lower the discrepancy in the three-point statistics, yielding closely unbiased bispectra both in real and in redshift space; which are in general compatible with those corresponding to an N -body simulation within 10 per cent (deviating at most up to 20 per cent). Our calculations show that the constant linear bias of ~2 for luminous red galaxy (LRG) like galaxies found in the power spectrum, mainly comes from sampling haloes in high-density peaks, choosing a high-density threshold rather than from a factor multiplying the dark matter density field. Our method contributes towards an efficient modelling of the halo/galaxy distribution required to estimate uncertainties in the clustering measurements from galaxy redshift surveys. We have also demonstrated that it represents a powerful tool to test various bias models.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-12
    Description: Crystal Growth & Design DOI: 10.1021/cg200649n
    Print ISSN: 1528-7483
    Electronic ISSN: 1528-7505
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-19
    Description: :  The ability to integrate and visualize experimental proteomic evidence in the context of rich protein feature annotations represents an unmet need of the proteomics community. Here we present Protter, a web-based tool that supports interactive protein data analysis and hypothesis generation by visualizing both annotated sequence features and experimental proteomic data in the context of protein topology. Protter supports numerous proteomic file formats and automatically integrates a variety of reference protein annotation sources, which can be readily extended via modular plug-ins. A built-in export function produces publication-quality customized protein illustrations, also for large datasets. Visualizations of surfaceome datasets show the specific utility of Protter for the integrated visual analysis of membrane proteins and peptide selection for targeted proteomics. Availability and implementation:  The Protter web application is available at http://wlab.ethz.ch/protter . Source code and installation instructions are available at http://ulo.github.io/Protter/ . Contact:   wbernd@ethz.ch Supplementary Information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rogers Hollingsworth, J -- Muller, Karl H -- Hollingsworth, Ellen Jane -- England -- Nature. 2008 Jul 24;454(7203):412-3. doi: 10.1038/454412a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Wisconsin (Madison), 455 North Park Street, Madison, Wisconsin 53706, USA. hollingsjr@aol.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18650902" target="_blank"〉PubMed〈/a〉
    Keywords: China ; Europe ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; Science/economics/*history/standards/*trends ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-08-21
    Description: A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be 〈6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉LIGO Scientific Collaboration & Virgo Collaboration -- Abbott, B P -- Abbott, R -- Acernese, F -- Adhikari, R -- Ajith, P -- Allen, B -- Allen, G -- Alshourbagy, M -- Amin, R S -- Anderson, S B -- Anderson, W G -- Antonucci, F -- Aoudia, S -- Arain, M A -- Araya, M -- Armandula, H -- Armor, P -- Arun, K G -- Aso, Y -- Aston, S -- Astone, P -- Aufmuth, P -- Aulbert, C -- Babak, S -- Baker, P -- Ballardin, G -- Ballmer, S -- Barker, C -- Barker, D -- Barone, F -- Barr, B -- Barriga, P -- Barsotti, L -- Barsuglia, M -- Barton, M A -- Bartos, I -- Bassiri, R -- Bastarrika, M -- Bauer, Th S -- Behnke, B -- Beker, M -- Benacquista, M -- Betzwieser, J -- Beyersdorf, P T -- Bigotta, S -- Bilenko, I A -- Billingsley, G -- Birindelli, S -- Biswas, R -- Bizouard, M A -- Black, E -- Blackburn, J K -- Blackburn, L -- Blair, D -- Bland, B -- Boccara, C -- Bodiya, T P -- Bogue, L -- Bondu, F -- Bonelli, L -- Bork, R -- Boschi, V -- Bose, S -- Bosi, L -- Braccini, S -- Bradaschia, C -- Brady, P R -- Braginsky, V B -- Brand, J F J van den -- Brau, J E -- Bridges, D O -- Brillet, A -- Brinkmann, M -- Brisson, V -- Van Den Broeck, C -- Brooks, A F -- Brown, D A -- Brummit, A -- Brunet, G -- Bullington, A -- Bulten, H J -- Buonanno, A -- Burmeister, O -- Buskulic, D -- Byer, R L -- Cadonati, L -- Cagnoli, G -- Calloni, E -- Camp, J B -- Campagna, E -- Cannizzo, J -- Cannon, K C -- Canuel, B -- Cao, J -- Carbognani, F -- Cardenas, L -- Caride, S -- Castaldi, G -- Caudill, S -- Cavaglia, M -- Cavalier, F -- Cavalieri, R -- Cella, G -- Cepeda, C -- Cesarini, E -- Chalermsongsak, T -- Chalkley, E -- Charlton, P -- Chassande-Mottin, E -- Chatterji, S -- Chelkowski, S -- Chen, Y -- Christensen, N -- Chung, C T Y -- Clark, D -- Clark, J -- Clayton, J H -- Cleva, F -- Coccia, E -- Cokelaer, T -- Colacino, C N -- Colas, J -- Colla, A -- Colombini, M -- Conte, R -- Cook, D -- Corbitt, T R C -- Corda, C -- Cornish, N -- Corsi, A -- Coulon, J-P -- Coward, D -- Coyne, D C -- Creighton, J D E -- Creighton, T D -- Cruise, A M -- Culter, R M -- Cumming, A -- Cunningham, L -- Cuoco, E -- Danilishin, S L -- D'Antonio, S -- Danzmann, K -- Dari, A -- Dattilo, V -- Daudert, B -- Davier, M -- Davies, G -- Daw, E J -- Day, R -- De Rosa, R -- Debra, D -- Degallaix, J -- Del Prete, M -- Dergachev, V -- Desai, S -- Desalvo, R -- Dhurandhar, S -- Di Fiore, L -- Di Lieto, A -- Di Paolo Emilio, M -- Di Virgilio, A -- Diaz, M -- Dietz, A -- Donovan, F -- Dooley, K L -- Doomes, E E -- Drago, M -- Drever, R W P -- Dueck, J -- Duke, I -- Dumas, J-C -- Dwyer, J G -- Echols, C -- Edgar, M -- Effler, A -- Ehrens, P -- Ely, G -- Espinoza, E -- Etzel, T -- Evans, M -- Evans, T -- Fafone, V -- Fairhurst, S -- Faltas, Y -- Fan, Y -- Fazi, D -- Fehrmann, H -- Ferrante, I -- Fidecaro, F -- Finn, L S -- Fiori, I -- Flaminio, R -- Flasch, K -- Foley, S -- Forrest, C -- Fotopoulos, N -- Fournier, J-D -- Franc, J -- Franzen, A -- Frasca, S -- Frasconi, F -- Frede, M -- Frei, M -- Frei, Z -- Freise, A -- Frey, R -- Fricke, T -- Fritschel, P -- Frolov, V V -- Fyffe, M -- Galdi, V -- Gammaitoni, L -- Garofoli, J A -- Garufi, F -- Genin, E -- Gennai, A -- Gholami, I -- Giaime, J A -- Giampanis, S -- Giardina, K D -- Giazotto, A -- Goda, K -- Goetz, E -- Goggin, L M -- Gonzalez, G -- Gorodetsky, M L -- Gobler, S -- Gouaty, R -- Granata, M -- Granata, V -- Grant, A -- Gras, S -- Gray, C -- Gray, M -- Greenhalgh, R J S -- Gretarsson, A M -- Greverie, C -- Grimaldi, F -- Grosso, R -- Grote, H -- Grunewald, S -- Guenther, M -- Guidi, G -- Gustafson, E K -- Gustafson, R -- Hage, B -- Hallam, J M -- Hammer, D -- Hammond, G D -- Hanna, C -- Hanson, J -- Harms, J -- Harry, G M -- Harry, I W -- Harstad, E D -- Haughian, K -- Hayama, K -- Heefner, J -- Heitmann, H -- Hello, P -- Heng, I S -- Heptonstall, A -- Hewitson, M -- Hild, S -- Hirose, E -- Hoak, D -- Hodge, K A -- Holt, K -- Hosken, D J -- Hough, J -- Hoyland, D -- Huet, D -- Hughey, B -- Huttner, S H -- Ingram, D R -- Isogai, T -- Ito, M -- Ivanov, A -- Johnson, B -- Johnson, W W -- Jones, D I -- Jones, G -- Jones, R -- Sancho de la Jordana, L -- Ju, L -- Kalmus, P -- Kalogera, V -- Kandhasamy, S -- Kanner, J -- Kasprzyk, D -- Katsavounidis, E -- Kawabe, K -- Kawamura, S -- Kawazoe, F -- Kells, W -- Keppel, D G -- Khalaidovski, A -- Khalili, F Y -- Khan, R -- Khazanov, E -- King, P -- Kissel, J S -- Klimenko, S -- Kokeyama, K -- Kondrashov, V -- Kopparapu, R -- Koranda, S -- Kozak, D -- Krishnan, B -- Kumar, R -- Kwee, P -- La Penna, P -- Lam, P K -- Landry, M -- Lantz, B -- Laval, M -- Lazzarini, A -- Lei, H -- Lei, M -- Leindecker, N -- Leonor, I -- Leroy, N -- Letendre, N -- Li, C -- Lin, H -- Lindquist, P E -- Littenberg, T B -- Lockerbie, N A -- Lodhia, D -- Longo, M -- Lorenzini, M -- Loriette, V -- Lormand, M -- Losurdo, G -- Lu, P -- Lubinski, M -- Lucianetti, A -- Luck, H -- Machenschalk, B -- Macinnis, M -- Mackowski, J-M -- Mageswaran, M -- Mailand, K -- Majorana, E -- Man, N -- Mandel, I -- Mandic, V -- Mantovani, M -- Marchesoni, F -- Marion, F -- Marka, S -- Marka, Z -- Markosyan, A -- Markowitz, J -- Maros, E -- Marque, J -- Martelli, F -- Martin, I W -- Martin, R M -- Marx, J N -- Mason, K -- Masserot, A -- Matichard, F -- Matone, L -- Matzner, R A -- Mavalvala, N -- McCarthy, R -- McClelland, D E -- McGuire, S C -- McHugh, M -- McIntyre, G -- McKechan, D J A -- McKenzie, K -- Mehmet, M -- Melatos, A -- Melissinos, A C -- Mendell, G -- Menendez, D F -- Menzinger, F -- Mercer, R A -- Meshkov, S -- Messenger, C -- Meyer, M S -- Michel, C -- Milano, L -- Miller, J -- Minelli, J -- Minenkov, Y -- Mino, Y -- Mitrofanov, V P -- Mitselmakher, G -- Mittleman, R -- Miyakawa, O -- Moe, B -- Mohan, M -- Mohanty, S D -- Mohapatra, S R P -- Moreau, J -- Moreno, G -- Morgado, N -- Morgia, A -- Morioka, T -- Mors, K -- Mosca, S -- Mossavi, K -- Mours, B -- Mowlowry, C -- Mueller, G -- Muhammad, D -- Muhlen, H Zur -- Mukherjee, S -- Mukhopadhyay, H -- Mullavey, A -- Muller-Ebhardt, H -- Munch, J -- Murray, P G -- Myers, E -- Myers, J -- Nash, T -- Nelson, J -- Neri, I -- Newton, G -- Nishizawa, A -- Nocera, F -- Numata, K -- Ochsner, E -- O'Dell, J -- Ogin, G H -- O'Reilly, B -- O'Shaughnessy, R -- Ottaway, D J -- Ottens, R S -- Overmier, H -- Owen, B J -- Pagliaroli, G -- Palomba, C -- Pan, Y -- Pankow, C -- Paoletti, F -- Papa, M A -- Parameshwaraiah, V -- Pardi, S -- Pasqualetti, A -- Passaquieti, R -- Passuello, D -- Patel, P -- Pedraza, M -- Penn, S -- Perreca, A -- Persichetti, G -- Pichot, M -- Piergiovanni, F -- Pierro, V -- Pinard, L -- Pinto, I M -- Pitkin, M -- Pletsch, H J -- Plissi, M V -- Poggiani, R -- Postiglione, F -- Principe, M -- Prix, R -- Prodi, G A -- Prokhorov, L -- Punken, O -- Punturo, M -- Puppo, P -- Putten, S van der -- Quetschke, V -- Raab, F J -- Rabaste, O -- Rabeling, D S -- Radkins, H -- Raffai, P -- Raics, Z -- Rainer, N -- Rakhmanov, M -- Rapagnani, P -- Raymond, V -- Re, V -- Reed, C M -- Reed, T -- Regimbau, T -- Rehbein, H -- Reid, S -- Reitze, D H -- Ricci, F -- Riesen, R -- Riles, K -- Rivera, B -- Roberts, P -- Robertson, N A -- Robinet, F -- Robinson, C -- Robinson, E L -- Rocchi, A -- Roddy, S -- Rolland, L -- Rollins, J -- Romano, J D -- Romano, R -- Romie, J H -- Rover, C -- Rowan, S -- Rudiger, A -- Ruggi, P -- Russell, P -- Ryan, K -- Sakata, S -- Salemi, F -- Sandberg, V -- Sannibale, V -- Santamaria, L -- Saraf, S -- Sarin, P -- Sassolas, B -- Sathyaprakash, B S -- Sato, S -- Satterthwaite, M -- Saulson, P R -- Savage, R -- Savov, P -- Scanlan, M -- Schilling, R -- Schnabel, R -- Schofield, R -- Schulz, B -- Schutz, B F -- Schwinberg, P -- Scott, J -- Scott, S M -- Searle, A C -- Sears, B -- Seifert, F -- Sellers, D -- Sengupta, A S -- Sentenac, D -- Sergeev, A -- Shapiro, B -- Shawhan, P -- Shoemaker, D H -- Sibley, A -- Siemens, X -- Sigg, D -- Sinha, S -- Sintes, A M -- Slagmolen, B J J -- Slutsky, J -- van der Sluys, M V -- Smith, J R -- Smith, M R -- Smith, N D -- Somiya, K -- Sorazu, B -- Stein, A -- Stein, L C -- Steplewski, S -- Stochino, A -- Stone, R -- Strain, K A -- Strigin, S -- Stroeer, A -- Sturani, R -- Stuver, A L -- Summerscales, T Z -- Sun, K-X -- Sung, M -- Sutton, P J -- Swinkels, B L -- Szokoly, G P -- Talukder, D -- Tang, L -- Tanner, D B -- Tarabrin, S P -- Taylor, J R -- Taylor, R -- Terenzi, R -- Thacker, J -- Thorne, K A -- Thorne, K S -- Thuring, A -- Tokmakov, K V -- Toncelli, A -- Tonelli, M -- Torres, C -- Torrie, C -- Tournefier, E -- Travasso, F -- Traylor, G -- Trias, M -- Trummer, J -- Ugolini, D -- Ulmen, J -- Urbanek, K -- Vahlbruch, H -- Vajente, G -- Vallisneri, M -- Vass, S -- Vaulin, R -- Vavoulidis, M -- Vecchio, A -- Vedovato, G -- van Veggel, A A -- Veitch, J -- Veitch, P -- Veltkamp, C -- Verkindt, D -- Vetrano, F -- Vicere, A -- Villar, A -- Vinet, J-Y -- Vocca, H -- Vorvick, C -- Vyachanin, S P -- Waldman, S J -- Wallace, L -- Ward, H -- Ward, R L -- Was, M -- Weidner, A -- Weinert, M -- Weinstein, A J -- Weiss, R -- Wen, L -- Wen, S -- Wette, K -- Whelan, J T -- Whitcomb, S E -- Whiting, B F -- Wilkinson, C -- Willems, P A -- Williams, H R -- Williams, L -- Willke, B -- Wilmut, I -- Winkelmann, L -- Winkler, W -- Wipf, C C -- Wiseman, A G -- Woan, G -- Wooley, R -- Worden, J -- Wu, W -- Yakushin, I -- Yamamoto, H -- Yan, Z -- Yoshida, S -- Yvert, M -- Zanolin, M -- Zhang, J -- Zhang, L -- Zhao, C -- Zotov, N -- Zucker, M E -- Zweizig, J -- England -- Nature. 2009 Aug 20;460(7258):990-4. doi: 10.1038/nature08278.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lists of participants and their affiliations appear at the end of the paper.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693079" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roeb, Martin -- Muller-Steinhagen, Hans -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):773-4. doi: 10.1126/science.1191137.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Technical Thermodynamics, Deutsches Zentrum fur Luft-und Raumfahrt, Linder Hoehe, Koeln, 51147 Germany. Martin.Roeb@dlr.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705841" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-01-12
    Description: Historically, time measurements have been based on oscillation frequencies in systems of particles, from the motion of celestial bodies to atomic transitions. Relativity and quantum mechanics show that even a single particle of mass m determines a Compton frequency omega(0) = mc(2)/[formula: see text] where c is the speed of light and [formula: see text] is Planck's constant h divided by 2pi. A clock referenced to omega(0) would enable high-precision mass measurements and a fundamental definition of the second. We demonstrate such a clock using an optical frequency comb to self-reference a Ramsey-Borde atom interferometer and synchronize an oscillator at a subharmonic of omega(0.) This directly demonstrates the connection between time and mass. It allows measurement of microscopic masses with 4 x 10(-9) accuracy in the proposed revision to SI units. Together with the Avogadro project, it yields calibrated kilograms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lan, Shau-Yu -- Kuan, Pei-Chen -- Estey, Brian -- English, Damon -- Brown, Justin M -- Hohensee, Michael A -- Muller, Holger -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):554-7. doi: 10.1126/science.1230767. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of California-Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306441" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-10-28
    Description: The spindle assembly checkpoint guards the fidelity of chromosome segregation. It requires the close cooperation of cell cycle regulatory proteins and cytoskeletal elements to sense spindle integrity. The role of the centrosome, the organizing center of the microtubule cytoskeleton, in the spindle checkpoint is unclear. We found that the molecular requirements for a functional spindle checkpoint included components of the large gamma-tubulin ring complex (gamma-TuRC). However, their localization at the centrosome and centrosome integrity were not essential for this function. Thus, the spindle checkpoint can be activated at the level of microtubule nucleation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Hannah -- Fogeron, Marie-Laure -- Lehmann, Verena -- Lehrach, Hans -- Lange, Bodo M H -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):654-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068266" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Cell Line ; Centrosome/physiology ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster ; Homeodomain Proteins/genetics/metabolism ; Humans ; Kinetochores/metabolism ; Microtubule-Associated Proteins/genetics/*metabolism ; Microtubules/ultrastructure ; *Mitosis ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases ; RNA Interference ; Spindle Apparatus/*metabolism/ultrastructure ; Tubulin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-05
    Description: The concept of hierarchical bottom-up structuring commonly encountered in natural materials provides inspiration for the design of complex artificial materials with advanced functionalities. Natural processes have achieved the orchestration of multicomponent systems across many length scales with very high precision, but man-made self-assemblies still face obstacles in realizing well-defined hierarchical structures. In particle-based self-assembly, the challenge is to program symmetries and periodicities of superstructures by providing monodisperse building blocks with suitable shape anisotropy or anisotropic interaction patterns ('patches'). Irregularities in particle architecture are intolerable because they generate defects that amplify throughout the hierarchical levels. For patchy microscopic hard colloids, this challenge has been approached by using top-down methods (such as metal shading or microcontact printing), enabling molecule-like directionality during aggregation. However, both top-down procedures and particulate systems based on molecular assembly struggle to fabricate patchy particles controllably in the desired size regime (10-100 nm). Here we introduce the co-assembly of dynamic patchy nanoparticles--that is, soft patchy nanoparticles that are intrinsically self-assembled and monodisperse--as a modular approach for producing well-ordered binary and ternary supracolloidal hierarchical assemblies. We bridge up to three hierarchical levels by guiding triblock terpolymers (length scale approximately 10 nm) to form soft patchy nanoparticles (20-50 nm) of different symmetries that, in combination, co-assemble into substructured, compartmentalized materials (〉10 mum) with predictable and tunable nanoscale periodicities. We establish how molecular control over polymer composition programs the building block symmetries and regulates particle positioning, offering a route to well-ordered mixed mesostructures of high complexity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groschel, Andre H -- Walther, Andreas -- Lobling, Tina I -- Schacher, Felix H -- Schmalz, Holger -- Muller, Axel H E -- England -- Nature. 2013 Nov 14;503(7475):247-51. doi: 10.1038/nature12610. Epub 2013 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Makromolekulare Chemie II, Universitat Bayreuth, D-95440 Bayreuth, Germany [2] Department of Applied Physics, Aalto University, FI-02150 Espoo, Finland (A.H.G.); Institute of Organic Chemistry, Johannes Gutenberg-Universitat, D-55099 Mainz, Germany (A.H.E.M.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24185010" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-09-16
    Description: Recent advances in DNA synthesis technology have enabled the construction of novel genetic pathways and genomic elements, furthering our understanding of system-level phenomena. The ability to synthesize large segments of DNA allows the engineering of pathways and genomes according to arbitrary sets of design principles. Here we describe a synthetic yeast genome project, Sc2.0, and the first partially synthetic eukaryotic chromosomes, Saccharomyces cerevisiae chromosome synIXR, and semi-synVIL. We defined three design principles for a synthetic genome as follows: first, it should result in a (near) wild-type phenotype and fitness; second, it should lack destabilizing elements such as tRNA genes or transposons; and third, it should have genetic flexibility to facilitate future studies. The synthetic genome features several systemic modifications complying with the design principles, including an inducible evolution system, SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution). We show the utility of SCRaMbLE as a novel method of combinatorial mutagenesis, capable of generating complex genotypes and a broad variety of phenotypes. When complete, the fully synthetic genome will allow massive restructuring of the yeast genome, and may open the door to a new type of combinatorial genetics based entirely on variations in gene content and copy number.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774833/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774833/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dymond, Jessica S -- Richardson, Sarah M -- Coombes, Candice E -- Babatz, Timothy -- Muller, Heloise -- Annaluru, Narayana -- Blake, William J -- Schwerzmann, Joy W -- Dai, Junbiao -- Lindstrom, Derek L -- Boeke, Annabel C -- Gottschling, Daniel E -- Chandrasegaran, Srinivasan -- Bader, Joel S -- Boeke, Jef D -- AG023779/AG/NIA NIH HHS/ -- R01 AG023779/AG/NIA NIH HHS/ -- R37 AG023779/AG/NIA NIH HHS/ -- England -- Nature. 2011 Sep 14;477(7365):471-6. doi: 10.1038/nature10403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉High Throughput Biology Center, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21918511" target="_blank"〉PubMed〈/a〉
    Keywords: Attachment Sites, Microbiological/genetics ; Chromosomes, Artificial, Yeast/*genetics ; Directed Molecular Evolution/methods ; Gene Dosage/genetics ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Genetic Engineering/*methods ; Genetic Fitness/genetics ; Genome, Fungal/genetics ; Genotype ; Haploidy ; Molecular Sequence Data ; Mutagenesis/genetics ; Phenotype ; RNA, Fungal/analysis/genetics ; Saccharomyces cerevisiae/classification/*genetics ; Synthetic Biology/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...