ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 9 (2003), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Uncertainty about the amounts of the greenhouse gas nitrous oxide (N2O), which arise from N leaching from agricultural soils, predominantly as nitrate (NO3–), is large. To date, the bulk of studies of N2O in aquatic systems have relied upon measurement of dissolved N2O concentrations at wide spatial intervals (of the order of km) down a stream, river or estuary. When we combined a fine-scale (m) assessment of N2O concentrations in agricultural drainage water with novel measurement of net N2O emission from the same drainage system, we found that dissolved N2O in agricultural drainage water was very rapidly lost to the atmosphere, while dissolved NO3– in the same water was conserved. Consequently, the N2O emission factor (as a proportion of the nitrate-N present, the IPCC's ‘EF5’) fell by a factor of more than 5 within only 100 m. Direct measurement of N2O emission from the drainage water confirmed the disappearance of N2O as being due to emission from water to the atmosphere, rather than in situ consumption by denitrification. Our findings indicate that making widely spaced measurements of dissolved N2O concentration and/or emissions from the water surface will not take account of this much more dynamic behaviour over short distances. Realistic assessment of the ‘indirect’ agricultural emissions of N2O from leached N will necessitate much more intensive sampling of the whole drainage system, from ditch to stream to river to estuary, accompanied by measurements of in-stream production. The quantities of N2O actually released in the ditches gave values for EF5-g (the IPCC's emission factor for N2O from surface drainage and groundwaters) of between 0.02 and 0.03%, compared with the IPCC value of 1.5%. For the latter to be realistic, the quantity of N2O required to be formed after the initial entry of water into the drainage system would need to exceed the initial load by the order of 50-fold.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-02-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-01-01
    Description: The Southern Ocean is the largest of the high-nutrient, low-chlorophyll (HNLC) regions of the world ocean. Phytoplankton production fails to utilise completely the pool of inorganic nutrients in the euphotic zone, giving rise to low phytoplankton bio-mass and leaving relatively high summer nutrient concentrations. This enigma is of considerable significance for our understanding of the role of the oceans in the global carbon cycle. Various limiting factors have been considered: low light, low temperature, absence of necessary trace elements, grazing pressure and other means of biomass removal. The dynamics of nitrogen uptake by phytoplankton are of particular importance. Classically, nitrate mixed into the surface layer during winter provides the nitrogen pool for growth in the spring bloom. Some organic material is exported to depth, whilst the remainder is recycled, providing ammonium and other reduced species as nitrogenous substrates for growth during the remainder of the season. The oxidation state of the inorganic nitrogen supply thus identifies new and recycled carbon fixation. Whilst this is convenient “shorthand” for the nitrogen nutrition of carbon export in much of the ocean, it is an inappropriate model for the Southern Ocean. Here, nitrate and ammonium use are simultaneous, and nitrate is never exhausted by the annual phytoplankton production. We speculate that a range of environmental factors combine to make the large pool of nitrate partially inaccessible to phytoplankton. in addition to the documented effects of low iron availability and high ammonium concentrations, the low temperatures characteristic of the Southern Ocean may decrease nitrate availability because of the increased energetic overheads in its uptake and reduction. This in turn makes ammonium an important nitrogenous substrate, and its production by zooplankton and heterotrophic microorganisms is an important component of the plankton nitrogen cycle. There is some evidence that ammonium production by large grazing animals may stimulate phytoplankton growth. Microbial removal of nitrogen from sedimenting phytoplankton cells may result in local decoupling between the carbon and nitrogen cycles, allowing some reduced nitrogen to remain in the euphotic zone whilst carbon is exported to depth.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...