ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Adsorption 2 (1996), S. 51-58 
    ISSN: 1572-8757
    Keywords: adsorption in pores ; computer simulation ; wetting ; heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Calculations are presented to illustrate the dependence of capillary adsorption upon the interactions present in model pores. The sequence of phase transitions at zero temperature is determined for a Lennard-Jones lattice gas in a pore consisting of 4 × 4 × ∞ sites. The dependence of the specific filling sequence upon the comparative strength of the gas-pore wall and the gas-gas interaction well-depths is determined. Grand canonical Monte Carlo simulations of sorption at finite temperature in the continuum version of the same model pore are also reported. Both the theory and the simulations were performed with variable gas-solid and gas-gas energy well-depths. At a temperature of 90 K, the gas-solid heterogeneity associated with atoms adsorbed in the corners, on the walls and in the interior pore volume gives rise to sequential adsorption similar to that observed in the lattice gas calculation at 0 K. A gradual approach to non-wetting behavior is observed as the gas-solid well-depth decreases. Values of the gas-solid well-depth needed to produce pore filling at saturation (i.e., “pore-wetting”) are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...