ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2746
    Keywords: grain boundary energy ; diffusion ; segregation ; solid/liquid interface ; wetting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The pressure effect on grain boundary wetting in Fe-6 at.%Si bicrystals of different misorientation angles but constant misorientation axis has been studied. The wetting agent was liquid zinc. It was found that the pressure for the dewetting transition is higher for the near Σ5 boundary than for the other general boundaries, where Σ is the inverse density of the coincidence sites in the two misoriented crystal lattices. This result was explained assuming a thinner liquid film wetting the near Σ5 boundary than in the case of nonperiodic grain boundaries. Furthermore, the wetting angle increased with increasing pressure. The wetting angle dependence on pressure could be understood assuming a excess surface volume of the solid/liquid (S/L) interface higher than 0.2 nm. This is considerably higher than the estimated excess volumes of grain boundaries based on computer simulations. To explain this result, it was postulated that in the system studied, where diffusion of Zn, Fe and Si perpendicular to the S/L interface takes place, the S/L interface is relatively thick and the interaction between the two crystals separated by the melt extends over more than 2 nm distance. This long-range interaction was rationalized in terms of clusters of several atoms, detaching from the solid and dissolving in the melt at some distance from the bulk.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Interface science 1 (1994), S. 201-206 
    ISSN: 1573-2746
    Keywords: Grain boundary wetting ; wetting phase transition ; wetting under hydrostatic pressure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Bicrystals of Fe-6 at.% Si alloy containing 〈001〉 Σ5 tilt grain boundaries with a deposited zinc layer have been annealed at various hydrostatic pressure at four temperatures between 700° and 905°C. After the anneals the dihedral angle ϑ of the grain boundary groove formed at the site of the grain boundary intersection with the solid-melt interphase boundary has been measured. The transition from complete to incomplete wetting of the grain boundary by the zinc-rich melt (dewetting phase transition) has been found to occur as the pressure increased at all temperatures studied. The temperature dependence of the dewetting transition pressure p w has been determined. That dependence has a minimum at a temperature of 790°C, which is close to the peritectic temperature in the Fe−Zn system (782°C). A thermodynamic analysis of the wetting phenomena in the two-component system, based on Becker's regular solution model for the surface tension of the interphase boundary, explains the minimum in the p w (T) dependence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...