ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Active volcanoes produce inaudible infrasound due to the coupling between surface magmatic processes and the atmosphere. Monitoring techniques based on infrasound measurements have been proved capable of producing information during volcanic crises. We report observations collected from an infrasound network on Mt. Etna which enabled us to detect and locate a new summit eruption on May 13, 2008 when poor weather inhibited direct observations. Three families of signals were identified that allowed the evolution of the eruption to be accurately tracked in real-time. Each family is representative of a different active vent, producing different waveforms due to their varying geometry. Several competitive models have been developed to explain the source mechanisms of the infrasonic events, but according to our studies we demonstrate that two source models coexist at Mt. Etna during the investigated period. Such a monitoring system represents a breakthrough in the ability to monitor and understand volcanic phenomena.
    Description: Published
    Description: L05304
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; infrasound ; eruption ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The period September–November 2007 was characterized at Mount Etna by explosive activity and intense degassing. During this time interval, infrasonic signals were recorded by an infrasonic network. By a triggering procedure, about 1000 infrasonic events were found, characterized by very high signal-to-noise ratio and grouped into nine families. Successively, the spectral analysis allowed subdividing these nine families into three clusters based on the peak frequency and the quality factor of the events. Finally, by the location analysis a cluster (cluster 1) was related to the degassing activity of the northeast crater (NEC), while the other two (clusters 2 and 3) to the explosive activity of the southeast crater (SEC). The comparison between the stacked infrasonic waveforms, interpreted as generated by the vibration of large gas bubbles, and the synthetic ones, permitted to calculate radius, length of the bubble, and initial overpressure, by a genetic algorithm method. The higher overpressure values of cluster 3 compared to the cluster 2 values were in good agreement with the stronger intensity of the explosions accompanying the infrasonic events of cluster 3. The variation of both intensities and waveforms is tentatively attributed to the occasional accumulation of lithic clasts (due to moderate landslides?) on the explosive vent. Indeed, events belonging to cluster 3 were no longer observed once the landslides had ended. Finally, the daily emitted gas volume, related to the active degassing, was estimated for NEC and SEC by using the infrasonic data during the studied period.
    Description: Published
    Description: B08308
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; Infrasound ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...