ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 272 (1994), S. 17-24 
    ISSN: 1435-1536
    Keywords: Dielectric measurements ; label ; polyisoprene ; ball-like molecules ; glass process ; local process ; voids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Ball-like molecules with strong dipoles (labels) were mixed with synthetic polyisoprene (IR305) in low concentrations (〈1%) and measured dielectrically in the frequency range 10−2–107 Hz and the temperature range −70–0°C (glass relaxation region). Calorimetric measurements showed that this type of label has a plasticizing effect on the polymeric matrix. The dielectric measurements showed that these ball-like molecules relax through cooperative rotations with the polymeric segments and at the same relaxation frequency. In addition, the label molecules showed a high-frequency local relaxation process. The relaxation strength ratio of the local process (X local) to the total relaxation strength of the label was found to be dependent on the volume as well as on the shape of the label. A comparison between the relaxation behaviors of the ball-and rod-like molecules, having the same volume, showed that the length of the label is also an important parameter for the determination of the local contribution as well as of the cooperative relaxation mechanism of the label. The label relaxation process is discussed in relation to the molecular packing of the host polymer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 272 (1994), S. 25-35 
    ISSN: 1435-1536
    Keywords: Dielectric relaxation ; label ; polystyrene ; ball-like molecules ; glass process ; voids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Ball-like molecules with strong dipoles (labels) were mixed with technical polystyrene (PS168N) in low concentrations (〈0.5% wt) and measured dielectrically in the frequency range 10−2–107 Hz, and the temperature range 100°–135°C (glass relaxation region). The measurements showed that these ball-like molecules relax cooperatively with the polymeric segments with relaxation times lying at the high-frequency tail of the glass process. The activation energy of the main label process is found to be very similar to that of the glass process of the polystyrene segments and also has the same temperature dependence. This finding implies the existence of an additional mode of relaxation in the dielectric spectrum of the glass process of polystyrene (compared to polyisoprene). Considering the different behavior of the ball-like molecules in polystyrene and polyisoprene and the temperature dependence of the half-width of dielectric loss peak in different polymers, we suggest that the polymers could be classified into three classes according to the available dielectric relaxation modes in the glass process. In addition, the label molecules showed a high-frequency local relaxation process. The relaxation strength ratio of the local process (X local) to the total relaxation strength of the label was found to be dependent on the volume of the label. This phenomenon could supply a new method for the determination of the mean size of the holes (voids) representing the free volume of the host matrix.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...