ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 30 (1996), S. 1233-1246 
    ISSN: 1573-5028
    Keywords: cysteine protease ; programmed cell death ; serine protease ; tracheary element ; xylogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The terminal process of xylogenesis, autolysis, is essential for the formation of a tubular system for conduction of water and solutes throughout the whole plant. Several hydrolase types are implicated in autolysis responsible for the breakdown of cytoplasm. Here, we characterize p48h-17 cDNA from in vitro tracheary elements (TEs) of Zinnia elegans which encodes a preproprotein similar to papain. The putative mature protein, a cysteine protease, has a molecular mass of 22,699 Da with a pI of 5.7. DNA gel blot analysis indicated that p48h-17 is likely encoded by one or two genes. The p48h-17 mRNA accumulated markedly in in vitro differentiating TEs, whereas it appeared not to be induced in response to senescence and wounding in the leaves or H2O2 challenge in the cultured mesophyll cells. In stems, the expression of the p48h-17 gene was preferentially associated with differentiating xylem. Activity gel assays demonstrated that a cysteine and a serine protease, which had apparent molecular masses of 20 kDa and 60 kDa, respectively, were markedly induced during in vitro TE differentiation. The cysteine protease activity was also preferentially present in the xylem of Zinnia stems. Transient expression of the p48h-17 cDNA in tobacco protoplasts resulted in the production of a 20 kDa cysteine protease. Taken together, the results indicate that the p48h-17 gene appears to be preferentially associated with xylogenesis, and both the cysteine and serine proteases might be involved in autolysis during xylogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: autolysis ; ribonuclease ; tracheary element ; wounding response ; xylogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The study of plant ribonuclease (RNase) functions is complicated by a complex profile of RNase activities detected in tissues. Thus, isolation of individual RNase genes will be desirable for the further understanding of function of each RNase. Here, we describe the isolation of cDNAs encoding two RNases, ZRNaseI and ZRNaseII, in differentiating tracheary elements (TEs) induced from isolated mesophyll cells of Zinnia elegans. Both the ZRNaseI and ZRNaseII exhibit putative secretion signal sequences at the amino-terminal ends with predicted molecular masses of 24 247 Da and 22 448 Da as mature proteins, respectively. DNA gel blot analysis showed that both RNases in Zinnia appear to be encoded by a small gene family. RNA gel blot analysis showed that the expression of the ZRNaseI gene was associated with the late stage of in vitro TE differentiation, whereas the ZRNaseII gene was mainly induced in response to stress. Neither RNase gene was induced in response to phosphate starvation, or to H2O2 challenge in the cultured mesophyll cells, or to senescence in the leaves. In young leaves, the ZRNaseI gene was not induced in response to wounding. But the ZRNaseII gene was markedly induced by 6 h after wounding. Tissue print hybridization showed that the expression of the ZRNaseI gene was preferentially associated with the differentiating TEs in Zinnia stems, while the ZRNaseII mRNA was not detected in unwounded Zinnia organs. Taken together, the results indicate that the ZRNaseI gene is expressed during the process of xylogenesis both in vitro and in the plant, whereas the ZRNaseII gene is predominantly induced in response to wounding. The identification of these RNase genes provides molecular tools for the dissection of the process of autolysis during xylogenesis, and for the dissection of the role of RNase in wounding response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...