ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: chalcone synthase ; β-d-glucuronidase (GUS) ; Phaseolus vulgaris ; flower development ; tobacco ; G-box ; H-box
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Expression of chalcone synthase (CHS), the first enzyme in the flavonoid branch of the phenylpropanoid biosynthetic pathway in plants, is induced by developmental cues and environmental stimuli. We used plant transformation technology to delineate the functional structure of the French bean CHS15 gene promoter during plant development. In the absence of an efficient transformation procedure for bean, Nicotiana tabacum was used as the model plant. CHS15 promoter activity, evaluated by measurements of β-d-glucuronidase (GUS) activity, revealed a tissue-specific pattern of expression similar to that reported for CHS genes in bean. GUS activity was observed in flowers and root tips. Floral expression was confined to the pigmented part of petals and was induced in a transient fashion. Fine mapping of promoter cis-elements was accomplished using a set of promoter mutants generated by unidirectional deletions or by site-directed mutagenesis. Maximal floral and root-specific expression was found to require sequence elements located on both sides of the TATA-box. Two adjacent sequence motifs, the G-box (CACGTG) and H-box (CCTACC(N)7CT) located near the TATA-box, were both essential for floral expression, and were also found to be important for root-specific expression. The CHS15 promoter is regulated by a complex interplay between different cis-elements and their cognate factors. The conservation of both the G-box and H-box in different CHS promoters emphasizes their importance as regulatory motifs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Transgenic research 3 (1994), S. 120-126 
    ISSN: 1573-9368
    Keywords: lignification ; tobacco ; caffeic acid 3-O-methyltransferase ; antisense RNA ; transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lignin is a major structural polymer of secondarily thickended plant vascular tissue and fibres, imparting mechanical strength to stems and trunks and hydrophobicity to conducting vessels. Constitutive expression of a lucerne caffeic acid 3-O-methyltransferase antisense RNA in transgenic tobacco leads to a significant reduction in lignin content, particularly in the younger parts of the stems, without apparent alterations in lignin monomer composition. These observations open up the possibility of genetically manipulating plants with reduced lignin for improved processing and biomass digestibility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: DNA-binding protein ; RNA-binding ; tobacco ; transcription factor ; xylem differentiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A study of the expression of a bean phenylalanine ammonia-lyase (PAL) promoter/β-glucuronidase gene fusion in transgenic tobacco has shown that the PAL2 promoter has a modular organization. Expression of the PAL2 promoter in the vascular system involves positive and negative regulatory cis elements. Among these elements is an AC-rich motif implicated in xylem expression and a suppressing cis element for phloem expression. Using radiolabelled complementary oligonucleotides bearing the AC-rich motif, a cDNA clone encoding a DNA-binding protein has been isolated from a tobacco λgt11 expression library. This factor, named AC-rich binding factor (ACBF), showed binding specificity to the AC-rich region. The specificity of ACBF for the AC-rich region was also shown using a gel retardation assay with an ACBF recombinant protein extract. The deduced amino acid sequence from ACBF contains a long repeat of glutamine residues as found in well characterized transcription factors. Interestingly, ACBF shared sequence similarity to conserved amino acid motifs found in RNA-binding proteins. Genomic gel blot analysis indicated the presence of a small gene family of sequences related to ACBF within the tobacco nuclear genome. Analysis of tobacco mRNA using the ACBF cDNA as probe showed that while ACBF mRNA was present in all tissues examined, the highest transcript accumulation occurred in stem tissues. The functional characteristics of the AC-rich sequence were examined in transgenic tobacco. A heptamer of the AC-rich sequence, in front of a minimal 35S promoter from cauliflower mosaic virus (_46 to +4 ), conferred specific expression in xylem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...