ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Applied Organometallic Chemistry 7 (1993), S. 623-633 
    ISSN: 0268-2605
    Keywords: Antifouling paints ; tributyltin (TBT) ; dibutyltin (DBT) ; monobutyltin (MBT) ; partitioning ; sorption ; desorption ; isotherm ; Environmental Quality Target ; sediment ; dredging ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This study was designed to investigate the partitioning and sorptive behaviour of tributyltin(TBT), and its degradation products dibutylitin (DBT) and monobutyltin (MBT), in the aquatic environment. Factorial experiments were undertaken to determine the importance of pH and particulate matter concentration in the sorption of butyltin compounds to solid phases. Results indicate that in freshwaters MBT, and to a lesser extent TBT, will be partitioned towards the particulate phase, whereas DBT exhibits a 50:50 partitioning between particulate and solution phases. In estuarine waters, whilst MBT will almost exclusively sorb on to particulates, TBT will be predominantly in the solid-phase fractions but 10-30% may remain in solution. DBT, in contrast, is solubilized in estuarine waters. A more detailed investigation of TBT sorption and particulate matter concentration was undertaken using adsorption isotherms on different sediment types. The results from batch isotherm tests plotted according to the Freundlich adsorption model revealed that TBT adsorption varied with sediment type, increasing in the order sandy-silt 〈 silty-sand 〈 silty-clay. TBT sorption was found to be reversible, indicating that contaminated sediments may release TBT to overlying waters following sediment distrubance. Interstitial water partitioning studies indicate that TBT predominates in the particulate phase with partition coefficients for TBT higher than for DBT and MBT. The TBT partition coefficient in interstitial waters appears to be related to total organic carbon loadings.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...