ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • snow chemistry  (2)
  • sodium transport  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 77 (1984), S. 15-23 
    ISSN: 1432-1424
    Keywords: aldosterone ; triidothyronine ; thyromimetic drugs ; sodium transport ; toad bladder ; Bufo marinus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Aldosterone increases transepithelial Na+ transport in the urinary bladder ofBufo marinus. The response is characterized by 3 distinct phases: 1) a lag period of about 60 min, ii) an initial phase (early response) of about 2 hr during which Na+ transport increases rapidly and transepithelial electrical resistance falls, and iii) a late phase (late response) of about 4 to 6 hr during which Na+ transport still increases significantly but with very little change in resistance. Triiodothyronine (T3, 6nm) added either 2 or 18 hr before aldosterone selectively antagonizes the late response. T3 per se (up to 6nm) has no effect on base-line Na+ transport. The antagonist activity of T3 is only apparent after a latent period of about 6 to 8 hr. It is not rapidly reversible after a 4-hr washout of the hormone. The effects appear to be selective for thyromimetic drugs since reverse T3 (rT3) is inactive and isopropyldiiodothyronine (isoT2) is more active than T3. The relative activity of these analogs corresponds to their relative affinity for T3 nuclear binding sites which we have previously described. Our data suggest that T3 might control the expression of aldosterone by regulating gene expression, e.g. by the induction of specific proteins, which in turn will inhibit the late mineralocorticoid response, without interaction with the early response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: aldosterone ; triiodothyronine ; sodium transport ; mineralocorticoid receptors ; bufo marinus ; down regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In the urinary bladder of the toadBufo marinus triiodothyronine selectively inhibits the late effect of aldosterone on Na+ transport. We have investigated whether T3 might mediate its antimineralocorticoid action by controlling: i) the level of aldosterone binding sites in the soluble (cytosolic) pool isolated from tissues treated with T3 (60nm) for up to 20 hr of incubation; ii) the kinetics of uptake of3H-aldosterone into cytoplasmic and nuclear fractions after 2 or 20 hr of exposure to T3. The number and the affinity of Type I (high affinity, low capacity) and Type II (low affinity, high capacity) cytosolic binding sites (measured at 0°C) did not vary significantly after 18 hr of exposure to T3, while aldosterone-dependent Na+ transport was significantly inhibited. In addition, T3 did not modify the kinetics of uptake (90 min) of3H-aldosterone into cytoplasmic and nuclear fractions of toad bladder incubatedin vitro at 25°C. By contrast, aldosterone itself was able to down-regulate its cytosolic and nuclear binding sites after an 18-hr exposure to the steroid hormone (10 or 80nm). T3 slightly (20%) but significantly potentiated the down regulation of nuclear binding sites. In conclusion, T3 does not appear to have major effects on the regulation of the aldosterone receptor, which could explain in a simple manner its antimineralocorticoid action.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-2932
    Keywords: Snow sampling ; snow chemistry ; intercomparison ; Alps
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract In order to investigate the seasonal and geographical distribution of snow concentrations anddeposition fluxes of environmentally relevant ionic species in the Alps, the international programSNOSP was initiated. In the framework of this program, intercomparisons of snow samplingtechniques and analytical methods to determine the ionic species C1-, NO 3 - ,SO 4 2- , K+, Na+, NH4 +, Mg2+, and Ca2+, as well as the pH and the specificconductivity were performed. The concentrations of these species in the snow samples collectedin the SNOSP program varied by orders of magnitude with, e.g., concentrations of NO 3 - , SO 4 2- , and NH4 + ranging from 0.2-60, 0.2-90, and 0.1-60 µeq L-1,respectively. The intercomparisons revealed a reasonable agreement of the determinations of thespecies Cl-, NO 3 - , SO 4 2- , Na+, and NH4 + in snow. Results were less satisfactory for K+, Mg2+, Ca2+,and H+, mainly due to the very low concentrations. In conclusion, recommendations areformulated for the reliable derivation of chemical inventories from snow packs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-2932
    Keywords: Snow sampling ; snow chemistry ; intercomparison ; Alps
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract In order to investigate the seasonal and geographical distribution of snow concentrations and deposition fluxes of environmentally relevant ionic species in the Alps, the international program SNOSP was initiated. In the framework of this program, intercomparisons of snow sampling techniques and analytical methods to determine the ionic species Cl−, NO3 −, SO4 2−, K+, Na+, NH4 +, Mg2+, and Ca2+, as well as the pH and the specific conductivity were performed. The concentrations of these species in the snow samples collected in the SNOSP program varied by orders of magnitude with, e.g., concentrations of NO3 −, SO4 2−, and NH4 + ranging from 0.2–60, 0.2–90, and 0.1–60μeq L−1, respectively. The intercomparisons revealed a reasonable agreement of the determinations of the species Cl−, NO3 −, SO4 2−, Na+, and NH4 + in snow. Results were less satisfactory for K+, Mg2+, Ca2+, and H+, mainly due to the very low concentrations. In conclusion, recommendations are formulated for the reliable derivation of chemical inventories from snow packs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...