ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: One of the open issues on the effects of surface geology regards the estimation of site response when limited resources are available. In that restrictive context, one solution is to use soil characteristics as proxy. Despite its extensive use, the most common proxy, Vs30, is presently criticized because it cannot carry alone the main physics of site response. We propose here a statistical investigation of the capabilities of another proxy, the Rayleigh-wave dispersion curve, DC. When considered over a broad enough frequency band, it can provide deeper information missing in the single Vs30 parameter. A set of shear-wave velocity profiles measured for more than 600 Japanese KiK-net stations is used to compute theoretical dispersion curves (DC) and theoretical SH transfer functions (SH), while instrumental surface/downhole spectral ratios were calculated in a previous work (Cadet et al., 2011a). Canonical correlation techniques are applied to this large data set to analyze the relationship between DC and theoretical or empirical site responses. The results indicate very encouraging qualitative statistical relationships between DC and site amplification for numerically derived SH transfer functions, showing significant canonical couples with correlations up to 0.95. Results for instrumental surface/downhole transfer functions correspond to lower correlations (up to 0.73) but still allow the development of quantitative relationships.
    Description: Published
    Description: Santa Barbara (California, USA)
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: site effects ; dispersion curve ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Standard spectral ratio from earthquake recordings (SSR) is considered the reference empirical method for assessing site effects as a function of frequency. However, other estimates can be easily obtained from noise measurements (i.e., Horizontal-to-Vertical Spectral Ratio, HVN), even though their reliability in terms of amplitude is controversial. In the framework of the ToK ITSAK-GR (2006-2010) EC project, Cultrera et al. (2010) analyzed recordings from 64 sites worldwide, founding that it is possible to have linear combinations of the HVN amplitudes significantly correlated to linear combinations of the SSR. In the present paper we show how to estimate the SSR spectral ratios when only noise measurements are available, using the results of the canonical correlation analysis between SSR and HVN recorded at several sites. The SSR evaluation has been tested by a cross validation procedure: the expected SSR at each validation site are in turn estimated by a weighted average of the SSR values measured at the other sites; the weights are properly set to account more for the sites with similar behavior in terms of the canonical correlation between HVN and SSR. To evaluate the goodness of the estimation, we compared all the inferred and original SSR, and we performed a critical analysis on the spectral characteristics of earthquake site response that can be easily recovered from noise measurements.
    Description: Published
    Description: Santa Barbara (California, USA)
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: site effects ; statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Standard spectral ratio from earthquake recordings (SSR) is considered the reference empirical method for assessing site effects as a function of frequency. However, other estimates can be easily obtained from noise measurements (i.e., Horizontal-to-Vertical Spectral Ratio, HVN), even though their reliability in terms of amplitude is controversial. In the framework of the ToK ITSAK-GR (2006-2010) and NERA (2007-2013) EC projects. Recordings from 64 sites from very different geographical areas where analyzed in the companion paper Cultrera et al. (2012); The authors evidenced statistically significant correlations between SSR and HVN through an appropriate linear combination of spectral ratio amplitudes using the canonical correlation technique. In the present paper we go one step further and show how to estimate the SSR spectral ratio of specific sites when only single station noise measurements are available, using the results of the canonical correlation analysis between SSR and HVN recorded at several sites and pertaining to the same area. A sistematic SSR evaluation has been conducted and tested by a cross validation procedure: the expected SSR at each validation site are in turn estimated by a weighted average of the SSR values measured at the other sites; the weights are properly set to account more for the sites with similar behavior in terms of the canonical correlation results between HVN and SSR. To evaluate the goodness of the estimation, we compared all the inferred and the original SSR, and we performed a critical analysis on the spectral characteristics of earthquake site response as recovered from noise measurements.
    Description: Submitted
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake ground motion prediction ; site effects ; statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: During the last two decades, three empirical methods for assessing site effects have been widely used: the Standard Spectral Ratio (SSR), the Horizontal-to-Vertical Spectral Ratio from earthquake recordings (HVSR) and the Horizontal-to-Vertical Spectral Ratio from ambient noise recordings (HVN). The SSR is considered the reference empirical method to detect amplification as a function of frequency, while the HVSR and the HVN realistically indicate fundamental frequency but, for the majority of the worldwide examined sites, they cannot give reliable amplification curves as a function of frequency. Given the fact that HVSR and especially HVN can be easily obtained, it is challenging to search for any correlation with SSR amplification functions. We used recordings from 168 sites worldwide, for which all three types of spectral ratios were homogeneously processed (Haghsenas et al., Bull. Earthquake Eng. 2008). On this data set we applied standard multivariate statistical analyses, namely, factor analysis and canonical correlation, to investigate and quantify -where it is possible- any correlation between spectral ratios for a certain number of the examined frequency bins. Results show that the correlation between HVN and HVSR is very good. Moreover, their correlation with broad band SSR can be statistically quantified and receive a satisfactory physical explanation. In addition, we looked for the correlation of SSR, HVSR and HVN collected in sedimentary basins (a subset of the previous database) with geometrical and geophysical parameters. T hese attempts were constrained by the limited amount of reliable in-situ data. Among many, we select 5 parameters: Vs30, Hb, Vs_average/Hb, Hb/W_valley, Hb/W_edge (where Hb is the bedrock’s depth below the station; Vs_average is the average Vs from surface to bedrock; W_valley is 2D-width of the valley; W_edge is the distance from the closest valley’s edge). T he analysis assesses that larger are the first 4 parameters, larger is the low-frequency amplification in HVSR and HVN, and lower the high-frequency contribution. Although additional data would improve our statistical investigation and better establish quantitative correlation between spectral ratios and geophysical or/and geometrical characteristics of sedimentary basins, our results clearly show that statistical correlation between SSR and HVN-HVSR is present and modulated in specific frequency domains. T his study has been performed in the framework of the T oK IT SAK-GR EC project (2006-2010).
    Description: Published
    Description: Montpellier, France
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: site effect ; ambient noise ; statistical analysis ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: L’ultimo ventennio ha visto lo sviluppo e l’uso di tre metodi empirici per l’analisi degli effetti di sito: Standard Spectral Ratio (SSR), Horizontal-to-Vertical Spectral Ratio da registrazioni sismiche (HVSR) e Horizontal-to-Vertical Spectral Ratio da registrazioni di rumore ambientale (HVN). SSR è considerato il metodo empirico di riferimento per rilevare le amplificazioni in funzione della frequenza. HVSR e HVN, invece, danno una stima realistica della frequenza fondamentale ma, generalmente, non riescono a fornire valori affidabili di amplificazione. Nel presente lavoro sono state utilizzate le registrazioni sismiche effettuate in 168 siti provenienti da diverse aree geografiche e per cui sono stati calcolati tutti e tre i tipi di rapporti spettrali (Haghsenas et al., 2008). Su questi dati abbiamo applicato delle analisi statistiche multivariate quali la correlazione canonica (Davis, 2002), con lo scopo di mettere in evidenza e quantificare le correlazioni tra i differenti rapporti spettrali nell’intero intervallo di frequenza compreso tra 0.2Hz e 10Hz. Questo tipo di analisi permette inoltre di associare alle correlazioni una stima della loro significatività ed è stata già utilizzata da Theodulidis et al. (2008) per studiare la relazione tra HVN e danneggiamento in aree urbane. I risultati mostrano che la correlazione tra HVN e HVSR è molto buona ad esclusione delle basse frequenze e che, per entrambe le tecniche, la presenza di un picco di amplificazione nell’intervallo 0.6-2 Hz è correlato ad un minimo per frequenze 3-10Hz. I picchi di amplificazione evidenziati da queste due tecniche sono inoltre correlabili con un più largo intervallo di frequenze nei rapporti SSR. Abbiamo quindi esteso l’analisi per correlare SSR, HVSR e HVN in bacini sedimentari (un subset dei dati utilizzati) con parametri geofisici e geometrici. La riduzione del numero dei dati deriva dall’esigenza di avere siti con una buona qualità di informazioni geofisiche e geometriche. Sono stati scelti cinque parametri indicatori delle velocità medie delle onde S e delle caratteristiche geometriche 2D della valle. Sebbene un più esteso data-set migliorerebbe l’analisi statistica, stabilendo migliori stime quantitative della correlazione tra rapporti spettrali e le caratteristiche geofisiche e geometriche dei bacini sedimentari, i nostri risultati mostrano chiaramente che le correlazioni tra SSR e HVN-HVSR esistono e si modulano in specifici intervalli di frequenza. Questo studio è stato condotto nell’ambito del progetto ToK ITSAK-GR EC (2006-2010).
    Description: Published
    Description: Prato, Italia
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: site effect ; ambient noise ; statistical analysis ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...