ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0840
    Keywords: seismic hazard ; characteristic earthquake ; time dependent process ; Calabria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract We tested a new hybrid method for the evaluation of seismic hazard. A recently proposed fault segmentation and earthquake recurrence model of peninsular Italy suggests that the interval for which the local historical catalogue is complete is shorter than the mean recurrence time of individual large faults (∼1000 years), or at the most comparable. These new findings violate the fundamental assumption of historical probabilistic seismic hazard methods that the historical record is representative of the activity of all the seismogenic sources. The hybrid method we propose uses time-dependent modelling of the major earthquakes and catalogue-based historical probabilistic estimates for all minor events. We assume that the largest earthquakes are characteristic for individual discrete fault segments, model their probability of occurrence by a renewal process and compute the shaking associated with each of them with a simplified procedure. Then we calculate the probability of exceeding a given threshold of peak ground acceleration for specific sites as the aggregate probability of occurrence of large characteristic earthquakes and minor shocks. We apply the method to the Calabrian Arc (Southern Italy) performing the calculations for five major towns. The exposure to seismic hazard of Reggio Calabria, Catanzaro and Vibo Valentia, which locate close to recently activated large faults, decreases with respect to traditional time-independent estimates. On the contrary, an increase of seismic hazard is obtained for Castrovillari, which locates in an area where large faults displaying Holocene activity have been recently recognized but no significant earthquake is reported in the historical catalogue. Cosenza has the highest probability to experience a significant peak ground acceleration with both the new hybrid and the traditional approaches. We wish to stress that the present results should be interpreted only in terms of the differences between the new hybrid and the traditional approaches, not for their absolute values, and that they are not intended to be used for updating or modifying the current national seismic zonation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: This document illustrates in details the raw structure of the Database of Individual Seismogenic Sources, version 3 [Basili et al., 2008; http://diss.rm.ingv.it/diss/] - hereinafter referred to as the Database – and is dedicated at instructing any potential contributor, outside the DISS Working Group, on how to populate it with new seismogenic sources. It is worth of notice that the primary purpose of the Database is to provide a seismogenic source model at regional scale. It is hence usually populated by filling in large regions at once, not record by record.
    Description: INGV, Roma1
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: Database ; Seismogenic source ; active fault ; active tectonics ; paleoseismology ; seismic hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We calculated the expected impact on the Italian coast of the Adriatic Sea of a large set of tsunamis resulting from potential earthquakes generated by major fault zones. Our approach merges updated knowledge on the regional tectonics and scenario-like calculations of expected tsunami impact. We selected six elongated potential source zones. For each of them we determined a Maximum Credible Earthquake and the associated Typical Fault, described by its size, geometry and kinematics. We then let the Typical Fault float along strike of its parent source zone and simulated all tsunamis it could generate. Simulations are based on the solution of the nonlinear shallow water equations through a finite-difference technique. For each run we calculated the wave fields at specified simulation times and the maximum water height field (above mean sea level), then generated travel-time maps and maximum wave height profiles along the target coastline. Maxima were also classified in a three-level code of expected tsunami threat. We found that the southern portion of Apulia facing Albania and the Gargano promontory are especially prone to the tsunami threat. We also found that some bathymetric features are crucial in determining the focalization-defocalization of tsunami energy. We suggest that our results be taken into account in the design of early-warning strategies.
    Description: INGV-DPC Project S2 “Assessing the seismogenic potential and the probability of strong earthquakes in Italy”
    Description: Published
    Description: 2117-2142
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: partially_open
    Keywords: tsunamis ; Adriatic Sea ; seismotectonics ; active faulting ; seismic hazard ; tsunami hazard ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: This paper describes the main characteristics, the evolution, and the current structure of the Database of Individual Seismogenic Sources (DISS) and particularly of its most recent release (version 3.0.2). The Database contains the results of the investigations of the active tectonics in Italy during the past 20 years. The first two sections of this paper document the recent evolution in mapping and archiving Italian active fault data in relation to important achievements in the understanding of Italian tectonics, some of which were spurred by significant earthquakes. The central sections describe the current structure of the Database, the reasons for its assumptions and data categories, its current contents, its evolution through several years of improvements. The last section describes how the current contents of the Database correspond with the existing strain and stress data available from focal mechanism, borehole breakout, and GPS data for the whole of Italy. The Database supplies a fresh and unified view of active and seismogenic processes in Italy by building on basic physical constraints concerning rates of crustal deformation, on the continuity of deformation belts and on the spatial relationships between adjacent faults, both at the surface and at depth.
    Description: INGV-DPC (Convenzione 2004-2006) grant to R. Basili (Project S2, Research Unit 1.1)
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: earthquake geology ; active fault ; active tectonics ; seismic source ; seismic hazard ; database ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Format: 3932029 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: DISS Version 3.0.4 This version of the Database contains over 100 individual seismogenic sources and over 80 seismogenic areas. Both categories are based on geological/geophysical data and cover the whole Italian territory and some conterminous regions. This version also incorporates: a totally new set of macroseismic sources based on the lately release historical earthquake catalogue: DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04 [Stucchi et al. (2007); http://emidius.mi.ingv.it/DBMI04/]; several updated sources and a few new sources based on the outcomes of the project INGV-DPC S2 Valutazione del potenziale sismogenetico e probabilità dei forti terremoti in Italia (Assessment of the seismogenic potential and probability of large earthquakes in Italy). This version also includes: over 2,100 selected references to scientific literature specifically pertinent to the identified seismogenic sources; new source-specific pictures selected from the literature, such as geological maps, cross-sections, and photographs. This version of the Database was primarily developed for use among the scientists who participated in the project INGV-DPC S2 "Valutazione del potenziale sismogenetico e probabilità dei forti terremoti in Italia" (Assessment of the seismogenic potential and probability of large earthquakes in Italy) - as the contribution of UR1.1 (task 1) for the project - who are informed on all its possible flaws and limitations. All other users are therefore cautioned in using version 3.0.4 in any application. As a product of the same project were also DISS versions 3.0.2 and 3.0.3.
    Description: Project “Valutazione del potenziale sismogenetico e probabilità dei forti terremoti in Italia” funded by Italy’s Department for Civil Protection (2005-2007).
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: open
    Keywords: seismogenic source ; active fault ; earthquake ; seismotectonics ; seismic hazard ; tsunami ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Historical earthquakes of the Gargano Promontory, an uplifted foreland sector in southeastern Italy, have been usually regarded as generated by inland faults. Some have been associated with activity of the Mattinata Fault, a section of a regional E-W shear zone. The 10 August 1893, Mw 5.4 is one of such earthquakes, but its current onshore location is only loosely based on the damage pattern. Regions that were hit by offshore earthquakes are also known to be affected by a methodological bias such that offshore historical events appear to be located onshore. To test this condition for the 1893 earthquake we pursued an alternative hypothesis for its location. The earthquake occurred near the Gondola Fault Zone, a right-lateral active fault system representing the offshore counterpart of the Mattinata Fault and hence capable of producing sizable earthquakes along the Gargano coast. We focused on its westernmost segment, suggesting that it could be the causative fault of the 1893 earthquake, in agreement with both the damage distribution and reported environmental effects. The approach we present works side by side with the recent developments of the algorithms used to compile historical catalogues, providing a fine-scale, geologically-based method to define or confirm the dubious location of historical earthquakes. Marine Paleoseismology is a new field stemming from the increased capabilities of high-resolution marine techniques in supporting classical paleoseismological analyses for the exploration of the seismogenic potential of offshore faults. Based on Late Pleistocene and Holocene individual or cumulative earthquake records, the potential of offshore faults can now be constrained in terms of expected magnitude and recurrence intervals. We stress the importance of revisiting historical earthquakes in coastal zones using marine paleoseismological data to assess regional seismic hazard, particularly in tectonic settings where regional-size seismogenic areas straddle the onshore and the offshore.
    Description: UF was financially supported by MIUR (Italian Ministry of Education and Research) FIRB Project “AIRPLANE”. This research has also benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC). Scientific papers funded by DPC do not represent its official opinion and policies. This is ISMAR-Bologna contribution n. 1720.
    Description: Published
    Description: 1-17
    Description: 3.2. Tettonica attiva
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Adriatic foreland ; Gondola Fault Zone ; macroseismic intensity ; seismic hazard ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This study presents the innovative concept of maximum observable shaking (MOS) maps. Our approach makes use of the improved understanding of the Italian regional tectonic setting and uses composite seismic sources (CSS) taken from an Italian database of individual seismic sources. The CSS are merged with high-frequency scenario calculations of expected maximum shaking in a given area. For a given CSS, we consider the associated typical fault, and compute the ground shaking for a rupture model derived from its associated maximum credible earthquake. As the maximum credible earthquake and typical fault ‘float’along the CSS (i.e. the computational fault plane takes on different spatial positions), the high-frequency ground motion is computed at each point surrounding the given fault, and the maximum from the observable shaking according to that scenario is plotted on the MOS map.
    Description: Agreement INGV-DPC 2007-2009 - Project S 1: Analysis of the seismic potential in Italy for evaluation of the seismic hazard
    Description: Unpublished
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: open
    Keywords: seimogenic source ; DISS ; High-Frequency ; Maximum Observable Shaking Map (MOS) ; ground shaking ; seismic hazard ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We present a strategy for obtaining fault-based maximum observable shaking (MOS) maps, which represent an innovative concept for assessing deterministic seismic ground motion at a regional scale. Our approach uses the fault sources supplied for Italy by the Database of Individual Seismogenic Sources, and particularly by its composite seismogenic sources (CSS), a spatially continuous simplified 3-D representation of a fault system. For each CSS, we consider the associated Typical Fault, i.e., the portion of the corresponding CSS that can generate the maximum credible earthquake. We then compute the high-frequency (1–50 Hz) ground shaking for a rupture model derived from its associated maximum credible earthquake. As the Typical Fault floats within its CSS to occupy all possible positions of the rupture, the high-frequency shaking is updated in the area surrounding the fault, and the maximum from that scenario is extracted and displayed on a map. The final high-frequency MOS map of Italy is then obtained by merging 8,859 individual scenario-simulations, from which the ground shaking parameters have been extracted. To explore the internal consistency of our calculations and validate the results of the procedure we compare our results (1) with predictions based on the Next Generation Attenuation ground-motion equations for an earthquake of Mw 7.1, (2) with the predictions of the official Italian seismic hazard map, and (3) with macroseismic intensities included in the DBMI04 Italian database. We then examine the uncertainties and analyse the variability of ground motion for different fault geometries and slip distributions.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC), in the framework of the 2007-2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia—DPC-INGV, Project S1.
    Description: Published
    Description: 1075-1107
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: partially_open
    Keywords: seismogenic source ; earthquake ; ground shaking ; seismic hazard ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We present a systematic and updated overview of a seismotectonic model for the Po Plain (northern Italy). This flat and apparently quiet tectonic domain is in fact rather active as it comprises the shortened foreland and foredeep of both the Southern Alps and the Northern Apennines. Assessing its seismic hazard is crucial due to the concentration of population, industrial activities and critical infrastructures, but it is also complicated because a) the region is geologically very diverse, and b) nearly all potential seismogenic faults are buried beneath a thick blanket of Pliocene-Pleistocene sediments, and hence can be investigated only indirectly. Identifying and parameterizing the potential seismogenic faults of the Po Plain requires proper consideration of their depth, geometry, kinematics, earthquake potential and location with respect to the two confronting orogens. To this end we subdivided them into four main homogeneous groups. Over the past 15 years we developed new strategies for coping with this diversity, resorting to different data and modeling approaches as required by each individual fault group. The most significant faults occur beneath the thrust fronts of the Ferrara-Romagna and Emilia arcs, which correspond to the most advanced and buried portions of the Northern Apennines and were the locus of the destructive May 2012 earthquake sequence. The largest known Po Plain earthquake, however, occurred on an elusive reactivated fault cutting the Alpine foreland south of Verona. Significant earthquakes are expected to be generated also by a set of transverse structures segmenting the thrust system, and by the deeper ramps of the Apennines thrusts. The new dataset is intended to be included in the next version of the Database of Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/, version 3.2.0, developed and maintained by INGV) to improve completeness of potential sources for seismic hazard assessment.
    Description: Published
    Description: 1105-1142
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Blind faulting ; seismogenic source ; active tectonics ; seismic hazard ; inherited faults ; Po Plain ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...