ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • scaled-orthographic  (1)
  • three-dimensional  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 27 (1998), S. 127-159 
    ISSN: 1573-1405
    Keywords: model-based vision ; object recognition ; alignment ; noise ; uncertainty ; error propagation ; linear programming ; perspective ; scaled-orthographic ; bounded error ; Gaussian error
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Robust recognition systems require a careful understanding of the effects of error in sensed features. In model-based recognition, matches between model features and sensed image features typically are used to compute a model pose and then project the unmatched model features into the image. The error in the image features results in uncertainty in the projected model features. We first show how error propagates when poses are based on three pairs of 3D model and 2D image points. In particular, we show how to simply and efficiently compute the distributed region in the image where an unmatched model point might appear, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. Next, we provide geometric and experimental analyses to indicate when this linear approximation will succeed and when it will fail. Then, based on the linear approximation, we show how we can utilize Linear Programming to compute bounded propagated error regions for any number of initial matches. Finally, we use these results to extend, from two-dimensional to three-dimensional objects, robust implementations of alignment, interpretation-tree search, and transformation clustering.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 25 (1997), S. 145-166 
    ISSN: 1573-1405
    Keywords: object recognition ; occlusion ; affine ; perspective ; regions ; pose estimation ; uniqueness ; two-dimensional ; three-dimensional ; model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Recognition systems attempt to recover information about the identity of observed objects and their location in the environment. A fundamental problem in recognition is pose estimation. This is the problem of using a correspondence between some portions of an object model and some portions of an image to determine whether the image contains an instance of the object, and, in case it does, to determine the transformation that relates the model to the image. The current approaches to this problem are divided into methods that use “global” properties of the object (e.g., centroid and moments of inertia) and methods that use “local” properties of the object (e.g., corners and line segments). Global properties are sensitive to occlusion and, specifically, to self occlusion. Local properties are difficult to locate reliably, and their matching involves intensive computation. We present a novel method for recognition that uses region information. In our approach the model and the image are divided into regions. Given a match between subsets of regions (without any explicit correspondence between different pieces of the regions) the alignment transformation is computed. The method applies to planar objects under similarity, affine, and projective transformations and to projections of 3-D objects undergoing affine and projective transformations. The new approach combines many of the advantages of the previous two approaches, while avoiding some of their pitfalls. Like the global methods, our approach makes use of region information that reflects the true shape of the object. But like local methods, our approach can handle occlusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...