ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • rock avalanche  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-07-01
    Description: The ~0.2 km3 Eibsee rock avalanche impacted Paleolake Eibsee and completely displaced its waters. This study analyses the lake impact and the consequences, and the catchment response to the landslide. A quasi‐3D seismic reflection survey, four sediment cores from modern Lake Eibsee, reaching far down into the rock avalanche mass, nine radiocarbon ages, and geomorphic analysis allow us to distinguish the main rock avalanche event from a secondary debris avalanche and debris flow. The highly fluidized debris avalanche formed a megaturbidite and multiple swashes that are recorded in the lake sediments. The new calibrated age for the Eibsee rock avalanche of ~4080–3970 cal yr BP indicates a coincidence with rockslides in the Fernpass cluster and subaquatic landslides in Lake Piburg and Lake Plansee, and raises the possibility that a large regional earthquake triggered these events. We document a complex history of erosion and sedimentation in Lake Eibsee, and demonstrate how the catchment response and rebirth of the lake are revealed through the complementary application of geophysics, sedimentology, radiocarbon dating, and geomorphology. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
    Description: Sedimentological, geophysical and geomorphological investigation in and around Lake Eibsee allows to decipher three rock‐slope failures from Mount Zugspitze: (i) the Eibsee rock avalanche ~4000 cal yr BP; (ii) a debris avalanche in the aftermath; and (iii) a large debris flow ~3740 cal yr BP. The Eibsee rock avalanche was re‐dated to a refined age of 4089–3876 cal yr BP. The coincidence with major events in the Fernpass rockslide cluster increases the likelihood of a prehistoric earthquake trigger.
    Description: Studienstiftung des Deutschen Volkes e.V. (German National Academic Foundation): http://dx.doi.org/10.13039/501100004350
    Description: British Society for Geomorphology http://dx.doi.org/10.13039/100010165
    Keywords: 551 ; rock avalanche ; lake impact ; lake sediments ; catchment response ; progressive slope failure ; recurrence rates ; prehistoric earthquake ; Fernpass rockslide cluster
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-01
    Description: Rock avalanches destroy and reshape landscapes in only a few minutes and are among the most hazardous processes on Earth. The surface morphology of rock avalanche deposits and the interaction with the underlying material are crucial for runout properties and reach. Water within the travel path is displaced, producing large impact waves and reducing friction, leading to long runouts. We hypothesize that the 0.2 km3 Holocene Eibsee rock avalanche from Mount Zugspitze in the Bavarian Alps overran and destroyed Paleolake Eibsee and left a unique sedimentological legacy of processes active during the landslide. We captured 9.5 km of electrical resistivity tomography (ERT) profiles across the rock avalanche deposits, with up to 120 m penetration depth and more than 34 000 datum points. The ERT profiles reveal up to ~50 m thick landslide debris, locally covering up to ~30 m of rock debris with entrained fine‐grained sediments on top of isolated remnants of decametre‐wide paleolake sediments. The ERT profiles allow us to infer processes involved in the interaction of the rock avalanche with bedrock, lake sediments, and morainal sediments, including shearing, bulging, and bulldozing. Complementary data from drilling, a gravel pit exposure, laboratory tests, and geomorphic features were used for ERT calibration. Sediments overrun by the rock avalanche show water‐escape structures. Based on all of these datasets, we reconstructed both position and size of the paleolake prior to the catastrophic event. Our reconstruction of the event contributes to process an understanding of the rock avalanche and future modelling and hazard assessment. Here we show how integrated geomorphic, geophysical, and sedimentological approaches can provide detailed insights into the impact of a rock avalanche on a lake. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
    Description: The Eibsee rock avalanche detached from Mount Zugspitze and impacted and destroyed Paleolake Eibsee. Paleolake Eibsee was larger than modern Lake Eibsee; the rock avalanche deposit covers the northern half of the paleolake. The complementary application of geomorphology, electrical resistivity tomography (ERT) and sedimentology allows for ERT calibration at seven different sites, where materials (rock avalanche, bedrock, lake clay, mixed sediments) and effects of the impact (bulldozing, bulging, overriding of secondary lobes, splashing of boulders) can be distinguished.
    Description: Studienstiftung des Deutschen Volkes e.V. (German National Academic Foundation): http://dx.doi.org/10.13039/501100004350
    Keywords: 551 ; rock avalanche ; runout ; lake impact ; paleolake reconstruction ; ERT calibration ; water‐escape structures ; Northern Calcareous Alps ; Eibsee ; Zugspitze
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...