ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1017
    Keywords: Oxyhemoglobin-NES ; resonance Raman scattering ; depolarization ratio ; tertiary effector binding ; Bohr effect ; heme-apoprotein interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The dispersion of the depolarization ratio of two prominent Raman lines (1,375 cm−1 and 1,638 cm−1) of oxyhemoglobin-N-ethyl succinimide have been examined for pH values between pH=6.0 and 8.5. Both exhibit a significant pH dependence. Calculation of the Raman tensor in terms of a fifth-order time dependent theory provides information about the pH-dependence of parameters reflecting symmetry classified distortions of the prosthetic heme group. To correlate these distortions with the functional properties of the molecule the following protocol was used: 1) An allosteric model suggested by Herzfeld and Stanley (1974) has been applied to O2-binding curves measured at different pH values between 6.5 and 9.0. From this calculation one obtains both, the energy differences between different molecular conformations and the equilibrium constants of oxygen and proton binding. 2) A titration model was formulated relating each conformation of a molecule to a distinct set of distortion parameters of the heme group. 3) The distortion parameters resulting from the analysis of our Raman data were assigned as an effective value due to incoherent superposition of the distortion parameters related to the different titration states. The application of this procedure yields an excellent reproduction of the pH-dependent effective distortion parameters of both Raman lines investigated. It is shown that the protonation of two tertiary effector groups located in the β-subunits affect the symmetry of the heme in a contrary manner: the protonation of a His-residue (pK=8.2, probably His(FG4)β) causes a symmetric position of the proximal imidazole thus lowering the perturbations of the heme core. Further it influences the interaction between amino acid residues of the heme cavity and pyrrole side chains (probably Val (FG5)β-vinyl (pyrrole 3) thus causing a decrease of the distortions related to the peripheral part of the heme. In contrast, the protonation of Lys (EF6) β causes a tilt position of the proximal imidazole and an increase of asymmetric perturbations of the heme core, whereas the interaction between the pyrrole side chains and the heme cavity is weakened. Our results are consistent with stereochemical predictions of Moffat (1971) concerning the existence of an H-bond between His(FG4)β and Cys(F9)β.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1017
    Keywords: Oxyhaemoglobin ; resonance Raman scattering ; dispersion of depolarisation ratio ; fifth-order Raman theory ; alkaline Bohr effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The depolarisation ratio and the excitation profiles of some prominent Raman lines of the oxyhaemoglobin spectrum (1,375 cm-1, 1,583 cm-1, 1,638 cm-1) have been measured as functions of the exciting laser frequency. The depolarisation ratio shows a complicated minimum-maximum structure in the preresonant region between Soret- and β-band of the optical spectrum, which depends on the pH-value of the solution. These dispersion curves are interpreted by fifth-order Loudon theory of the polarisability tensor including static distortions of the haem group, which lower its symmetry from the ideal D 4h-symmetry, and enhancement by a second, non-Raman-active phonon. The fitting constants needed to fit the experimental data are related to static distortions of A 1g, B 1g, B 2g, and A 2g` symmetry types and thus give information on the symmetry lowering from D 4h. The variation of the fitting constants with the pH-value of the solution is interpreted to be caused by protonation/deprotonation processes of titrable amino acid groups contributing to the alkaline and acid Bohr effect. The protonation changes the electrostatic interaction energies in the globular protein and destabilises the salt bridge between His(HC3)β and Asp(FG1)β in the R-state. These processes induce distortions of the haem group via haem-apoprotein interactions. Our results give no indication for a dominant role of the covalent Fe2+-N[His(F8)] bond in this process. They are in agreement, however, with the allosteric model of Hopfield, which assumes all interactions to be evenly distributed all over the protein molecule.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...