ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • protein phosphorylation  (1)
  • β-adrenoceptor antagonist  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1573-4919
    Keywords: human heart ; force of contraction ; protein phosphorylation ; phospholamban
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Disturbances in the cAMP production during β-adrenergic stimulation and alterations of Ca 2+ transport controlling proteins and their regulation in the sarcoplasmic reticulum might be involved in the pathogenesis of the failing human heart. Thus, we investigated the cAMP-mediated phosphorylation of phospholamban, troponin I and C-protein in electrically driven, intact isolated trabeculae carneae from nonfailing and failing (NYHA IV) human hearts in parallel to contractile properties on the same tissue samples. The increase in force of contraction induced by isoproterenol (0.2 μM) or pimobendan (100 μM), a phosphodiesterase inhibitor, was diminished in the failing human hearts compared to nonfailing hearts by 49% and 36%, respectively. Concomitantly the isoproterenol-induced phosphorylation (pmol P/mg homogenate protein) of phospholamban, troponin I and C-protein was reduced from 13.0 ± 2.4 (n = 4), 30.5 ± 1.5 (n = 5) and 11.0 ± 1.3 (n = 5) in the nonfailing heart to 5.2 ±0.6 (n = 13), 14.6 ± 2.2 (n = 16) and 7.1 ± 1.0 (n = 6) in the failing human heart, respectively. Pimobendan changed the phosphorylation state of these proteins similar to isoproterenol. The fact that combined addition of both agents or dibuturyl CAMP (1 mM) alone restored the phosphorylation capacity as observed in the control groups indicates that i) a reduced cAMP generation is related to the reduced phosphorylation of regulatory phosphoproteins located in the sarcoplasmic reticulum and contractile apparatus e.g. phospholamban, troponin I and C-protein, that ii) there is a relationship between protein phosphorylation state and contractile activity and that iii) no changes in the respective content of phosphoproteins are involved in the limitation of cAMP-mediated inotopic activity in the failing human heart. (Mol Cell Biochem 157: 171–179, 1996)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 157 (1996), S. 251-258 
    ISSN: 1573-4919
    Keywords: heart failure ; adrenergic receptor ; muscarinic receptor ; G-protein ; phosphodiesterase inhibitor ; angiotensin converting enzyme inhibitor ; β-adrenoceptor antagonist
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In end-stage heart failure the expression of different myocardial regulatory proteins involved in the β-adrenergic cAMP signalling pathway is altered. The downregulation of β-adrenoceptors and their uncoupling from the effector as well as an increased expression of the inhibitory GTP-binding protein seem to be the most important alterations. Since catecholamine levels are elevated in these patients and since some alterations can be ‘restored’ after treatment with β-adrenoceptor antagonists it was hypothesized that excessive β-adrenergic stimulation could be involved in these alterations. In this article the changes of β-adrenergic receptors, GTP-binding proteins, sarcoplasmic reticulum Ca2+-ATPase and of phospholamban found in heart failure are addressed with its possible therapeutic implications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...