ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • potassium niobate (KNbO3)  (1)
  • 1
    ISSN: 1573-8663
    Keywords: ferroelectrics ; superlattices ; size effects ; strain effects ; potassium niobate (KNbO3)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Epitaxial, uniformly strained superlattices of ferroelectric KNbO3 and paraelectric KTaO3 are studied with respect to their structural and dielectric properties. For dielectric measurements, perfectly lattice-matched conducting KNbO3Sr(Ru0.5Sn0.5)O3 electrodes are used, and a broad, frequency-dependent maximum is observed in the capacitance-vs-temperature curves. Niobium K-edge glancing-angle EXAFS provides information regarding the crystal structure of KNbO3 films as thin as two unit cells in superlattices with equal KTaO3 and KNbO3 layer thicknesses, showing a clear difference between these thinnest-layer superlattices and films of the KNbO3K(Ta0.5Nb0.5O3 solid-solution. X-ray diffraction measurements, on the other hand, indicate that these samples exhibit the same transition temperature KNbO3Tc, indicating the importance of long-range electrostatic interactions. Analysis of the transition temperature for various structures leads to a clear identification of the effect of size and strain on KNbO3Tc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...