ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 441-451 
    ISSN: 1573-5176
    Keywords: algal biotechnology ; cost effectiveness ; light curve ; light regime ; limits of productivity ; photobioreactor efficiency ; photosynthetic efficiency ; strong light ; tultrahigh cell density
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5176
    Keywords: Spirulina platensis ; mixing rate ; light intensity ; algal density ; photobioreactor ; productivity ; photosynthetic efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the rate of mixing on productivity of algal mass in relation to photon flux density and algal concentration was quantitatively evaluated in cultures ofSpirulina platensis grown in a newly designed flat-plate photobioreactor. Special emphasis was placed on elucidating the principles underlying efficient utilization of high photon flux density for maximal productivity of algal-mass. Whereas the rate of mixing exerted little influence on productivity and photosynthetic efficiency in cultures of relatively low algal density, its effect became ever more significant as algal concentration was increased. Maximal mixing-enhanced cell concentrations and productivity of biomass were obtained at the highest light intensity used. At each level of incident light intensity, maximum productivity and photosynthetic efficiency could be achieved only when algal concentration and mixing rates were optimized. The higher the intensity of the light source, the higher became the optimal culture density, highest algal concentrations and productivity of biomass being obtained at the highest light intensity used. The rate of mixing required careful optimization: when too low, maximal productivity resulting from the most efficient utilization of light could not be obtained. Too high a rate of mixing resulted in cell damage and reduced output rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...