ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • photochemistry  (1)
  • tropospheric chemistry  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 10 (1990), S. 289-300 
    ISSN: 1573-0662
    Keywords: Atmospheric chemistry ; tropospheric chemistry ; photodissociation ; photolysis ; J values ; molecular action spectrum ; spectral integration ; errors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Tropospheric photodissociation rate coefficients (J values) were calculated for NO2, O3, HNO2, CH2O, and CH3CHO using high spectral resolution (0.1 mm wavelength increments), and compared to the J values obtained with numerically degraded resolution (Δλ=1, 2, 4, 6, 8, and 10 nm, and several commonly used nonuniform grids). Depending on the molecule, substantial errors can be introduced by the larger increments. Thus for Δλ=10 nm, errors are less than 1% for NO2, less than 2% for HNO2, +6.5% to -16% for CH2O, -6.9% to +24% for CH3CHO, and -24% to +110% for O3. The errors for CH2O arise from the fine structure of its absorption spectrum, and are prevalently negative (underestimate of J). The errors for O3, and to a lesser extent for CH3CHO, arise mainly from under-resolving the overlap of the molecular action spectrum and the tropospheric actinic flux in the wavelength region of stratospheric ozone attenuation. The sign of those errors depends on whether the actinic flux is averaged onto the grid before or after the radiative transfer calculation. In all cases studied, grids with Δλ≤2 nm produced errors no larger than 5%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0662
    Keywords: PAN ; ozone ; troposphere ; photochemistry ; Alaska
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A seven-year record of surface ozone measurements from Denali NationalPark, Alaska shows a persistent spring maximum. These data, combined withmeasurements of NOx, hydrocarbons, O3, and PANfrom a continental site in Alaska during the spring of 1995 are used as thebasis for a sensitivity study to explore tropospheric photochemistry in thisregion. Because of the relatively high concentrations of NOx(mean of 116, median of 91 pptv), the net tendency was for photochemicalozone production. The range of net O3 production for averageconditions measured at this site during spring is between 0.96–3.9ppbv/day depending on the assumptions used; in any case, this productionmust contribute to the observed springtime maximum in O3.Model calculations showed that of the anthropogenic ozone precursors, onlyNOx had a strong effect on the rate of ozone production; themeasured concentrations of anthropogenic hydrocarbons did not significantlyaffect the ozone budget. Naturally produced biogenic hydrocarbons, such asisoprene, may also have a significant effect on ozone production, even atconcentrations of a few 10's of pptv. An observed temperature-isoprenerelationship from a boreal site in Canada indicates that isoprene may bepresent during the Alaskan spring. Measurements of isoprene taken duringthe spring of 1996 suggest that reactive biogenic hydrocarbon emissionsbegin before the emergence of leaves on deciduous trees and that theconcentrations were sufficient to accelerate ozone production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...