ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: penicillin G acylase ; Kluyvera citrophila ; immobilization-stabilization of penicillin G acylase ; stabilization of multimeric enzymes ; reactivation of enzyme derivatives ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have developed a strategy for immobilization-stabilization of penicillin G acylase (PGA) from Kluyvera citrophila by controlled multipoint covalent attachment to agarose-aldehyde gels. This enzyme is composed by two dissimilar subunits noncovalently bound. Thus, in this article we establish clear correlations between enzyme stabilization and the multipoint immobilization and/or between enzyme stabilization and the involvement of the two subunits in the attachment of them to the support. We have demonstrated that important thermal stabilizations of derivatives were only obtained through a very intense enzyme-support multipoint attachment involving the whole enzyme molecule. In this way, we have prepared derivatives preserving more than 90% of catalytic activity and being more than 1000-fold more stable than soluble and one-point attached enzyme. In addition, the involvement of the two subunits in the covalent attachment to the support has proved to be essential to develop interesting strategies for reactivation of inactivated enzyme molecules [e.g., by refolding of immobilized PGA after previous unfolding with urea and sodium dodecyl sulfate (SDS)]. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: aqueous two-phase systems ; immobilized enzymes ; continuous extraction of product ; penicillin G acylase ; synthesis of antibiotics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Yields of kinetically controlled synthesis of antibiotics catalyzed by penicillin G acylase from Escherichia coli (PGA) have been greatly increased by continuous extraction of water soluble products (cephalexin) away from the surroundings of the enzyme. In this way its very rapid enzymatic hydrolysis has been avoided. Enzymes covalently immobilized inside porous supports acting in aqueous two-phase systems have been used to achieve such improvements of synthetic yields. Before the reaction is started, the porous structure of the biocatalyst can be washed and filled with one selected phase. In this way, when the pre-equilibrated biocatalyst is mixed with the second phase (where the reaction product will be extracted), the immobilized enzyme remains in the first selected phase in spite of its possibly different natural trend.Partition coefficients (K) of cephalexin in very different aqueous two-phase systems were firstly evaluated. High K values were obtained under drastic conditions. The best K value for cephalexin (23) was found in 100% PEG 600-3 M ammonium sulfate where cephalexin was extracted to the PEG phase. Pre-incubation of immobilized PGA derivatives in ammonium sulfate and further suspension with 100% PEG 600 allowed us to obtain a 90% synthetic yield of cephalexin from 150 mM phenylglycine methyl ester and 100 mM 7-amino desacetoxicephalosporanic acid (7-ADCA). In this reaction system, the immobilized enzyme remains in the ammonium sulfate phase and hydrolysis of the antibiotic becomes suppressed because of its continuous extraction to the PEG phase. On the contrary, synthetic yields of a similar process carried out in monophasic systems were much lower (55%) because of a rapid enzymatic hydrolysis of cephalexin. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:73-79, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...