ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 52 (1993), S. 220-226 
    ISSN: 0730-2312
    Keywords: vitamin D3 ; prostaglandin E2 ; cAMP ; phosphoinositide ; GTP-binding protein ; osteoblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the effects of vitamin D3 on the signaling pathways by prostaglandin E2 (PGE2) in osteoblast-like MC3T3-E1 cells. The pretreatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, significantly inhibited cAMP accumulation induced by 10 μM PGE2 in a dose-dependent manner in the range between 1 pM and 1 nM. This effect of 1,25-(OH)2D3 was dependent on the time of pretreatment up to 8 h. 1,25-(OH)2D3 also inhibited the cAMP accumulation induced by NaF, a GTP-binding protein activator, or forskolin which directly activates adenylate cyclase. On the other hand, 1,25-(OH)2D3 significantly inhibited PGE2-induced IP3 formation in a dose-dependent manner between 10 pM and 1 nM. However, 1,25-(OH)2D3 had little effect on NaF-induced IP3 formation. The pretreatment with 24,25-dihydroxyvitamin D3, an inactive form of vitamin D3, affected neither cAMP accumulation nor IP3 formation induced by PGE2. These results strongly suggest that 1,25-(OH)2D3 modulates the signaling by PGE2 in osteoblast-like cells as follows: the inhibitory effect on the cAMP production is exerted at a point downstream from adenylate cyclase and the inhibitory effect on the phosphoinositide hydrolysis is exerted at the point between the PGE2 receptor and GTP-binding protein, probably Gi2.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: prostaglandin F2α ; phospholipase D ; protein kinase C ; pertussis toxin ; GTP-binding protein ; osteoblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We previously reported that prostaglandin F2α (PGF2α) receptor is coupled to pertussis toxin (PTX)-sensitive GTP-binding protein (G protein) in osteoblast-like MC3T3-E1 cells [Miwa et al. (1990): Biochem Biophys Res Commun 171:1229-1235]. In the present study, we examined the effect of PGF2α on the activation of phosphatidylcholine-hydrolyzing phospholipase D in MC3T3-E1 cells. PGF2α stimulated the formation of choline in a dose-dependent manner in the range between 10 nM and 10 μM. The formation of choline was stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester. 4α-Phorbol 12,13-didecanoate, a PKC-nonactivating phorbol ester, had little effect on choline formation. The formation of choline stimulated by a combination of PGF2α and TPA was additive. Staurosporine, an inhibitor for protein kinases, which inhibited the effect of TPA on choline formation, dose-dependently enhanced the formation of choline induced by PGF2α. NaF, an activator of G protein, stimulated the formation of choline. The formation of choline stimulated by a combination of PGF2α and NaF was not additive. NaF-induced formation of choline was dose-dependently enhanced by staurosporine. PTX dose-dependently inhibited the PGF2α-induced formation of choline. These results strongly suggest that PGF2α activates phospholipase D independently from the activation of PKC in osteoblast-like cells and PTX-sensitive G protein is involved in the PGF2α-induced phospholipase D activation. © 1994 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...