ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 14 (1991), S. 167-191 
    ISSN: 1572-9729
    Keywords: leaf longevity ; nitrogen ; nutrient use efficiency ; phosphorus ; requirement ; retranslocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Aboveground nitrogen (N) and phosphorus (P) requirement, retranslocation and use efficiency were determined for 28-year-old red oak (Quercus rubra L.), European larch (Larix decidua Miller), white pine (Pinus strobes L.), red pine (Pinus resinosa Ait.) and Norway spruce (Picea abies (L) Karst.) plantations on a similar soil in southwestern Wisconsin. Annual aboveground N and P requirements (kg/ha/yr) totaled 126 and 13 for red oak, 86 and 9 for European larch, 80 and 9 for white pine, 38 and 6 for red pine, and 81 and 13 for Norway spruce, respectively. Nitrogen and P retranslocation from current foliage ranged from 81 and 72%, respectively, for European larch, whereas red pine retranslocated the smallest amount of N (13%) and Norway spruce retranslocated the smallest amount of P (18%). In three evergreen species, uptake accounted for 72 to 74% of annual N requirement whereas for two deciduous species retranslocation accounted for 76 to 77% of the annual N requirement. Nitrogen and P use (ANPP/uptake) was more efficient in deciduous species than evergreen species. The results from this common garden experiment demonstrate that differences in N and P cycling among species may result from intrinsic characteristics (e.g. leaf longevity) rather than environmental conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: broad-leaved deciduous ; forest floor residence time ; needle-leaved evergreen ; nitrogen cycling ; nutrient use efficiency ; Wisconsin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract It has been suggested that a feedback exists between the vegetation and soil whereby fertile (vs infertile) sites support species with shorter leaf life spans and higher quality litter which promotes rapid decomposition and higher soil nutrient availability. The objectives of this study were to (1) characterize and compare the C and N dynamics of dominant upland forest ecosystems in north central Wisconsin, (2) compare the nutrient use efficiency (NUE) of these forests, and (3) examine the relationship between NUE and site characteristics. Analyzing data from 24 stands spanning a moisture / nutrient gradient, we found that resource-poor stands transferred less C and N from the vegetation to the forest floor, and that N remained in the forest floor at least four times longer than in more resource-rich stands. Analyzing data by leaf habit, we found that less N was transferred to the forest floor annually via litterfall in conifer stands, and that N remained in the forest floor of these stands nearly three times longer than in hardwood stands. NUE did not differ among forests with different resource availabilities, but was greater for conifers than for hardwoods. Vitousek's (1982) index of nutrient use efficiency (INUE1 = leaf litterfall biomass / leaf litterfall N) was most closely correlated to litterfall specific leaf area and percent hardwood leaf area index, suggesting that differences in species composition may have been responsible for the differences in NUE among our stands. NUE2, defined as ANPP / leaf litterfall N, was not closely correlated to any of the site characteristics included in this analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...