ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • nonaqueous media  (1)
  • protein stability  (1)
  • 1
    ISSN: 0006-3592
    Schlagwort(e): thermoinactivation of enzymes ; protein stability ; stabilization ; covalent modification ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Based on the idea that proteins can be stabilized by a decrease in the thermodynamically unfavorable contact of the hydrophobic surface clusters with water, α-chymotrypsin (CT) was acylated with carboxylic acid anhydrides or re-ductively alkylated with aliphatic aldehydes. Modification of CT with hydrophilic reagents leads to 100-1000-fold increase in stability against the irreversible thermoinactivation. The correlation holds: the greater the hydrophilization increment brought about by the modification, the higher is the protein thermostability. After some limiting value, however, a further increase in hydrophilicity does not change thermostability.It follows from the dependence of the thermoinactivation rate constants on temperature that for hydrophilized CT there is the conformational transition at 55-65°C into an unfolded state in which inactivation is much slower than that of the low-temperature conformation. The thermodynamic analysis and fluorescent spectral data confirm that the slow inactivation of hydrophilized CT at high temperatures proceeds via a chemical mechanism rather than Incorrect refolding operative for both the native and low-temperature form of the modified enzyme. Hence, the hydrophilization stabilizes the unfolded high-temperature conformation by eliminating the incorrect refolding. © 1992 John Wiley & Sons, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 654-657 
    ISSN: 0006-3592
    Schlagwort(e): enzyme activation ; nonaqueous media ; lyophilization with salt ; substrate diffusion ; subtilisin Carlsberg ; thermolysin ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The dramatic activation of serine proteases in nonaqueous media resulting from lyophilization in the presence of KCl is shown to be unrelated to relaxation of potential substrate diffusional limitations. Specifically, lyophilizing subtilisin Carlsberg in the presence of KCl and phosphate buffer in different proportions, ranging from 99% (w/w) enzyme to 1% (w/w) enzyme in the final lyophilized solids, resulted in biocatalyst preparations that were not influenced by substrate diffusion. This result was made evident through use of a classical analysis whereby initial catalytic rates, normalized per weight of total enzyme in the catalyst material, were measured as a function of active enzyme for biocatalyst preparations containing different ratios of active to inactive enzyme. The active enzyme content of a given biocatalyst preparation was controlled by mixing native subtilisin with subtilisin preinactivated with PMSF, a serine protease inhibitor, and lyophilizing the enzyme mixture in the presence of different fractions of KCl and phosphate buffer. Plots of initial reaction rates as a function of percent active subtilisin in the biocatalyst were linear for all biocatalyst preparations. Thus, enzyme activation (reported elsewhere to be as high as 3750-fold in hexane for the transesterification of N-Ac-L-Phe-OEt with n-PrOH) is a manifestation of intrinsic enzyme activation and not relaxation of diffusional limitations resulting from diluted enzyme preparations. Similar activation is reported herein for thermolysin, a nonserine protease, thereby demonstrating that enzyme activation due to lyophilization in the presence of KCl may be a general phenomenon for proteolytic enzymes. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 654-657, 1998.
    Zusätzliches Material: 3 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...