ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • microstructure  (1)
  • structural geology  (1)
  • 1
    Publication Date: 2020-02-10
    Description: Smectite clays are the main constituent of slipping zones found in subduction zone faults at shallow depth (e.g., 〈1-km depth in the Japan Trench) and in the decollements of large landslides (e.g., 1963 landslide, Vajont, Italy). Therefore, deformation processes in smectite clays may control the mechanical behavior from slow creep to fast accelerations and slip during earthquakes and landslides. Here, we use (1) laboratory experiments to investigate the mechanical behavior of partly water-saturated smectite-rich gouges sheared from subseismic to seismic slip rates V and (2) nanoscale microscopy to study the gouge fabric. At all slip rates, deformation localizes in volumes of the gouge layer that contain a "nanofoliation" consisting of anastomosing smectite crystals. "Seismic" nanofoliations produced at V = 0.01, 0.1, and 1.3 m/s are similar to "subseismic" nanofoliations obtained at V = 10-5 m/s. This similarity suggests that frictional slip along water-lubricated smectite grain boundaries and basal planes may occur from subseismic to seismic slip rates in natural smectite-rich faults. Thus, if water is available along smectite grain boundaries and basal planes, nanofoliations can develop from slow to fast slip rates. Still, when nanofoliations are found highly localized in a volume, they can be diagnostic of slip that occurred at rates equal or larger than 0.01 m/s. In such a case, they could be markers of past seismic events when found in natural fault rocks.
    Description: European Research Council Consolidator. Grant Number: 614705 NOFEAR
    Description: Published
    Description: 6589-6601
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: earthquake ; microstructure ; deformation processes ; high velocity friction
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-11
    Description: Dynamic fault strength τ (rock friction in the broad sense) and its evolution with seismic slip and slip rate are among the most relevant parameters in earthquake mechanics. Given the large slip rate (1 m s−1 on average), displacement (up to tens of meters), effective stress (tens of MPa), typical of seismic faulting at depth, thermo-mechanical effects become outstanding: dynamic fault strength is severely affected by fluid and rock phase changes, extreme grain size reduction, and the production of amorphous and unstable materials in the slipping zone. Here, first we will summarize the most relevant findings about dynamic fault strength during seismic slip mainly obtained thanks to the exploitation of dedicated experimental machines (i.e., rotary shear apparatus). However, the interpretation of this experimental dataset remains debated because of technical limitations which impede us to measure fundamental parameters such as temperature, strain rate, pore fluid pressure and grain size in the slipping zone. Without a sound estimate of these physical parameters, any constitutive law proposed to describe the evolution of dynamic fault strength during simulated seismic slip remains speculative. Then, we will discuss the results of some recent experiments which exploit new technical approaches to overcome the main limitations of the previous studies. The experimental approach, together with field studies of the geometry and architecture of exhumed faults and modelling, remains our most powerful tool to investigate seismic-related deformation mechanisms in both natural and human-induced earthquakes.
    Description: Unpublished
    Description: ISRM Regional Symposium - 11th Asian Rock Mechanics Symposium October 21–25, 2021 Beijing, China
    Description: OST3 Vicino alla faglia
    Keywords: earthquakes ; rock mechanics ; structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...