ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • methanol biosynthesis  (1)
  • Process Engineering, Biotechnology, Nutrition Technology  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 551-556 
    ISSN: 0006-3592
    Keywords: Methylosinus trichosporium ; methanol biosynthesis ; immobilization ; batch and continuous studies ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The DEAE-cellulose linked cells of Methylosinus trichosporium displaying high specific methane mono-oxygenase activity (66 μmol methane oxidized/h mg cells) were used for methanol biosynthesis from biogas derived methane in a batch and a continuous cell reactor. The optimum cell-to-carrier ratio was determined to be 0.5 g cells/g dry weight cellulose. Batch experiments indicated that 100 mM phosphate ion concentration was necessary to inhibit further oxidation of methanol; excess oxygen supply favored methanol accumulation with an increase in methane conversion efficiency to 27%. A pulse of 40 mM sodium formate at the end of 6 h resulted in restoration of methanol accumulation by regenerating NADH2 required for the sustained activity of methane mono-oxygenase. Maximum methanol level of 50 μmol/mg cells was obtained in the batch reactor. In a standard 50-mL ultrafiltration continuous reactor, the covalently linked cells produced methanol at a continuous rate of 100 μmol/h for the first 10 h, after which the methanol accumulation rate fell low due to the depletion of NADH2. The methanol accumulation could be stimulated by supplying sodium formate (40 mM) in either 20 or 100 mM phosphate buffer. Maximum methanol accumulation rate of 267 μmol/h was obtained when 20 mM formate was supplied in the feed stream containing 100 mM phosphate ions, and this level of biosynthesis was maintained for over 72 h. The stoichiometric balance made at various points of formate addition indicated that the molar amount of methanol generated at steady state is dependent on the equimolar addition of sodium formate to the feed. The half-life t1/2 and thermal denaturation rate constant Kd were computed to be 108 h and 6.42 × 10-3 h-1, respectively.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...