ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • mercury  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; catchment output ; Fenno-Scandia ; mercury cycling ; methylmercury ; mercury
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The input and output flux data of total Hg (THg) and methylmercury (MeHg) from three catchments located in different geographical regions in Sweden and one catchment in southern Finland were compared to elucidate the role of current atmospheric Hg/MeHg deposition with regard to waterborne Hg/MeHg output. There was a negative co-variaton between the open field THg inputs and the ratio of THg output to open field input. The highest ratio (and lowest input) occurring in N. Sweden and S. Finland, while the lowest output ratio (and highest inputs) occurred in southwest Sweden. A much larger variation was found in the ratio of output to open field input for MeHg (14 to 160%). Examinations of MeHg input/output data in relation to catchment charateristics suggest that riparian peat, mires and wet organic soil contributed to the large MeHg output from certain catchments, probably due to in situ production of MeHg. This finding is consistent with other studies which have found that catchment characteristics such as wetland area, flow pathways, seasonal temperature and water flow are important in controlling the output of MeHg. These catchment characteristics govern the fate of the contemporary input of Hg and MeHg as well as the mobilization of the soil pools.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...