ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • mammals  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1573-4919
    Keywords: Thioredoxin reductase ; bacteriae ; mammals ; inactivation ; reactivation ; mechanism ; metals ; oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The activity of pure calf-liver and Escherichia coli thioredoxin reductases decreased drastically in the presence of NADPH or NADH, while NADP+, NAD+ and oxidized E. coli thioredoxin activated both enzymes significantly, particularly the bacterial one. The loss of activity under reducing conditions was time-dependent, thus suggesting an inactivation process: in the presence of 0.24 mM NADPH the half-lives for the E. coli and calf-liver enzymes were 13.5 and 2 min, respectively. Oxidized E. coli thioredoxin fully protected both enzymes from inactivation, and also promoted their complete reactivation after only 30 min incubation at 30° C. Lower but significant protection and reactivation was also observed with NADP+ and NAD+. EDTA protected thioredoxin reductase from NADPH inactivation to a great degree, thus indicating the participation of metals in the process; EGTA did not protect the enzyme from redox inactivation. Thioredoxin reductase was extensively inactivated by NADPH under aerobic and anaerobic conditions, thus excluding the participation of O2 or oxygen active species in redox inactivation. The loss of thioredoxin reductase activity promoted by NADPH was much faster and complete in the presence of NAD+ glycohydrolase, thus suggesting that inactivation was related to full reduction of the redox-active disulfide. Those results indicate that thioredoxin reductase activity can be modulated in bacteria and mammals by the redox status of NADP(H) and thioredoxin pools, in a similar way to glutathione reductase. This would considerably expand the regulatory potential of the thioredoxin-thioredoxin reductase system with the enzyme being self-regulated by its own substrate, a regulatory protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...