ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 2917-2924 
    ISSN: 0887-624X
    Keywords: liquid-crystalline copolymer ; chiral nematic phase ; smectic phase ; chiral spacer ; carbazolyl group ; electron donor-acceptor interaction ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Side-chain liquid crystalline polymers containing both mesogenic (carbazolylmethylene)aniline and (4′-nitrobenzylidene)aniline units with various spacer groups were prepared to examine effects of the structure of spacer groups on the liquid crystalline properties. The copolymer containing (R)-(+)-2-methylpropylene as a chiral group in the spacer unit induced a smectic phase; the copolymer with a trimethylene spacer of similar length to the chiral spacer exhibited a nematic phase. Smectic phases were observed for the copolymer containing the chiral spacer group when the proportion of the carbazolyl group was in the range of 0.55-0.88. For example, the copolymer with the proportion of the carbazolyl group of 0.68 expressed the smectic phase from 88° to 167°C. This isotropic temperature was 37° higher than the calculated value (130°C) based on an assumed copolymer composition without the electron donor-acceptor interaction. Thus, it is assumed that for the chiral copolymer containing both electron donor and acceptor groups, the thermal stability and the induction of the smectic phase were caused by both the electron donor-acceptor interaction and the existence of the chiral group in the spacer unit. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 2221-2232 
    ISSN: 0887-624X
    Keywords: liquid-crystalline copolymer ; polymer blend ; smectic phase ; mesogenic structure ; carbazolyl ; electron donor-acceptor interaction ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Side-chain liquid-crystalline copolymers and polymer blends containing an electron-donating (carbazolylmethylene)aniline group and electron-accepting nitrophenyl groups with various central linking groups between aromatic groups in the mesogenic units, i.e., N=CH, CH=CH, N=N, and COO, were prepared to examine effects of the mesogenic structure on thermal behaviours. The most remarkable effects of the central linking group on the thermal properties and the miscibility were observed for the polymer blends. The 1:1 miscible polymer blends were prepared from the electron-donating polymer containing (carbazolylmethylene)aniline group (PM6Cz) and the electron-accepting polymers with similar central linking groups, i.e., N=CH, CH=CH, and N=N. For example, the 1: 1 polymer blend of PM6Cz and the electron-accepting polymer containing the nitrostilbene group induced a smectic phase from 73 to 207°C. This isotropic temperature was 46°C higher than the calculated value (161°C) based on the composition without the electron donor-acceptor interaction. On the other hand, the 1: 1 polymer blend of PM6Cz and the electron-accepting polymer containing the nitrophenylbenzoate group showed phase separation. Thus, the remarkable thermal stability and the miscibility of the polymer blends containing the electron donor and acceptor groups might be caused by planar structures between the mesogenic side groups which have similar central linking groups through the electron donor-acceptor interaction. A similar tendency was seen for copolymers and binary mixtures of both low-molecular-weight compounds containing the same mesogenic groups. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...