ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5176
    Keywords: areal productivity ; cell mass ; flat plate glass reactor ; light path ; polysaccharides ; Porphyridium ; red microalgae ; Rhodophyta ; viscosity ; volumetric productivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This work concerns an attempt to develop large scalecultivation of Porphyridium sp. outdoors. Theimpact on cell growth and production of solublesulphated polysaccharides of light-path length (LP)was studied in flat plate glass reactors outdoors. TheLP of the plate reactors ranged from 1.3–30 cm,corresponding to culture volumes of 3–72 L. The sidewalls of all reactors were covered, ensuring similarilluminated surfaces for all reactors. Maximal daytemperature was maintained at 26 ±1 °C.Growth conditions of pH (7.5), stirring (withcompressed air) and mineral nutrients, were optimal.Maximal volumetric concentration of the soluble sulfated polysaccharide (1.32 g L-1) was obtained in winter with the smallest light-pathreactor (1.3 cm ) at a cell density of 1.37 ×1011cells L-1. Under these conditions, theviscosity of the culture medium was also highest,being inversely proportional to the culture'slight-path. Highest areal concentration of solublepolysaccharides (60 g m-2) and areal cell density(3.01 × 1012m-2) was recorded in the 20 cmLP reactor, progressively lower values being obtainedas the light path became shorter. A similar patternwas obtained for the areal productivity ofpolysaccharides, the highest being 4.15 g m-2day-1 (considering the total illuminated reactorsurface), produced in the 20-cm LP reactor.The main sugar composition (i.e. xylose, galactose andglucose) of the sulfated polysaccharides was similarin all reactors. As viscosity increased with timeduring culture growth, there was a substantial declinein bacterial population. Cultivation throughout mostof the year provided good evidence that a light pathlength of 20 cm in flat plate reactors under theseconditions is optimal for maximal areal solublepolysaccharide production of Porphyridium sp.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 123-127 
    ISSN: 1573-5176
    Keywords: mass cultures ; light utilisation ; light regime ; optimalcell density ; light path ; mixing rates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Basic issues involved in effective use of a high photon irradiance for mass production of microalgae are elucidated: efficient utilisation of high irradiance requires cultures of high cell density grown in reactors with a narrow light path. The smaller the light-path, the higher the growth rate and the volume output rate (g L−1d−1) of cell mass. Areal productivity (g m−2d−1) may be inversely related to the length of light-path (e.g. Spirulina platensis) or directly related to it, as is the case with Nannochloropsis sp., in which the areal output rate increased with the increase in the light-path and the areal volume (L m−2). Inhibition of cell growth in Nannochloropsis became evident as cell concentration increased above a certain point. Response in cell growth to elevated irradiance was therefore possible only when the growth medium of ultrahigh cell density cultures was frequently changed. Inhibitory activity to culture growth may be directly involved in determining the optimal cell density (which results in the highest output of cell mass) and hence the optimal light-path. Under optimal growth conditions, cultures of high cell densities responded well to the rate of stirring, the relative beneficial effect of mixing increasing with the increase in cell density.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...