ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 25 (1996), S. 195-236 
    ISSN: 0885-6125
    Keywords: learning curves ; statistical mechanics ; phase transitions ; VC dimension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper we introduce and investigate a mathematically rigorous theory of learning curves that is based on ideas from statistical mechanics. The advantage of our theory over the well-established Vapnik-Chervonenkis theory is that our bounds can be considerably tighter in many cases, and are also more reflective of the true behavior of learning curves. This behavior can often exhibit dramatic properties such as phase transitions, as well as power law asymptotics not explained by the VC theory. The disadvantages of our theory are that its application requires knowledge of the input distribution, and it is limited so far to finite cardinality function classes. We illustrate our results with many concrete examples of learning curve bounds derived from our theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Machine learning 25 (1996), S. 195-236 
    ISSN: 0885-6125
    Keywords: learning curves ; statistical mechanics ; phase transitions ; VC dimension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper we introduce and investigate a mathematically rigorous theory of learning curves that is based on ideas from statistical mechanics. The advantage of our theory over the well-established Vapnik-Chervonenkis theory is that our bounds can be considerably tighter in many cases, and are also more reflective of the true behavior of learning curves. This behavior can often exhibit dramatic properties such as phase transitions, as well as power law asymptotics not explained by the VC theory. The disadvantages of our theory are that its application requires knowledge of the input distribution, and it is limited so far to finite cardinality function classes. We illustrate our results with many concrete examples of learning curve bounds derived from our theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...