ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • internal gravity waves  (1)
  • 1
    Publication Date: 2021-07-20
    Description: Motivated by the question of whether and how wave–wave interactions should be implemented into atmospheric gravity‐wave parametrizations, the modulation of triadic gravity‐wave interactions by a slowly varying and vertically sheared mean flow is considered for a non‐rotating Boussinesq fluid with constant stratification. An analysis using a multiple‐scale WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) expansion identifies two distinct scaling regimes, a linear off‐resonance regime, and a nonlinear near‐resonance regime. Simplifying the near‐resonance interaction equations allows for the construction of a parametrization for the triadic energy exchange which has been implemented into a one‐dimensional WKBJ ray‐tracing code. Theory and numerical implementation are validated for test cases where two wave trains generate a third wave train while spectrally passing through resonance. In various settings, of interacting vertical wavenumbers, mean‐flow shear, and initial wave amplitudes, the WKBJ simulations are generally in good agreement with wave‐resolving simulations. Both stronger mean‐flow shear and smaller wave amplitudes suppress the energy exchange among a resonantly interacting triad. Experiments with mean‐flow shear as strong as in the vicinity of atmospheric jets suggest that internal gravity‐wave dynamics are dominated in such regions by wave modulation. However, triadic gravity‐wave interactions are likely to be relevant in weakly sheared regions of the atmosphere.
    Description: This study explores wave–wave interactions of modulated internal gravity waves (GWs) in varying background flows using WKBJ techniques. The resulting ray‐tracing model (b) is compared to wave‐resolving LES (a). As a key result, we find that wave modulation partially suppresses the energy exchange in triadic GW interactions, and thus triadic GW interactions are likely to be relevant in weakly sheared regions of the atmosphere.
    Description: German Research Foundation (DFG) US National Science Foundation
    Keywords: 551.5 ; internal gravity waves ; parametrization ; ray‐tracing ; triadic wave–wave interaction ; wave modulation
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...