ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • inotropic reserve  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 186 (1998), S. 185-193 
    ISSN: 1573-4919
    Keywords: inotropic reserve ; ischemia ; myocardial metabolism ; myocardial hibernation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract When severe ischemia, such as that resulting from a sudden and complete coronary artery occlusion, is prolonged for more than 20-40 min, myocardial infarction develops, and there is irreversible loss of contractile function. When myocardial ischemia is less severe but nevertheless prolonged, the myocardium is dysfunctional but can remain viable. In such ischemic and dysfunctional myocardium, contractile function is reduced in proportion to the reduction in regional myocardial blood flow; i.e. a state of ‘perfusion-contraction matching’ exists. The metabolic status of such myocardium improves over the first few hours, as myocardial lactate production is attenuated and creatine phosphate, after an initial reduction, returns towards control values. Ischemic myocardium, characterized by perfusion-contraction matching, metabolic recovery and lack of necrosis, has been termed 'short-term hibernating myocardium'. Short-term hibernating myocardium can respond to inotropic stimulation with increased contractile function, although at the expense of renewed worsening of the metabolic status. This occurrence of increased regional contractile function at the expense of metabolic recovery during inotropic stimulation can be used to identify short-term hibernating myocardium. When inotropic stimulation is prolonged, short-term hibernation is impaired and myocardial infarction develops. The mechanisms responsible for the development of short-term myocardial hibernation remain unclear at present. Significant involvement of adenosine and activation of ATP-dependent potassium channels have been excluded. The role of triggering events and acidosis is controversial. Short-term hibernating myocardium is, however, characterized by reduced calcium responsiveness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...