ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • infrared spectroscopy  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 26 (1999), S. 437-445 
    ISSN: 1432-2021
    Keywords: Key words lawsonite ; high pressure ; infrared spectroscopy ; hydrogen bonding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The infrared spectrum of CaAl2Si2O7 · H2O-lawsonite, has been characterized to pressures of 20 GPa at 300 K. Our results constrain the response to compression of the silicate tetrahedra, hydroxyl units, and water molecules in this material. The asymmetric and symmetric stretching and bending vibrations of the Si2O7 groups (at zero pressure frequencies between 600 and 1000 cm−1) increase in frequency with pressure at rates between 3.6 and 5.9 cm−1/GPa. All silicate modes appear to shift continuously with pressure to 20 GPa, although the lowest frequency stretching vibration becomes unresolvable above 18 GPa, and a splitting of the main bending vibration is observed near this pressure. The O-H stretches of the hydroxyl units exhibit a discontinuity in their mode shifts at ∼8–9 GPa, which we interpret to be produced by a pressure-induced change in hydrogen bonding. The stretching and bending vibrations of the water molecule are relatively unaffected by compression to 20 GPa, thus demonstrating that the structural cavities in which water molecules reside are relatively rigid. Significant changes in the amplitude of the O-H stretches of the hydroxyl and water units are observed at this pressure as well; nevertheless, our results demonstrate that the dominant structural units in lawsonite persist metastably at 300 K with only modest structural modifications well beyond the known stability field of this phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...