ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 25 (1997), S. 620-625 
    ISSN: 0142-2421
    Keywords: atomic force microscopy/lateral force microscopy (AFM/LFM) ; atomic resolution ; highly oriented pyrolytic graphite (HOPG) ; computer simulation ; stick-slip processes ; atomic scale friction ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: Although the atoms in cleavage planes of graphite are arranged in a honeycomb structure, it is well known from experimental work that atomic force microscopy (AFM) yields a hexagonal structure, a phenomenon that has not been understood so far. Here, computer simulations of the atomic-scale imaging process on graphite by AFM are reported, showing that this behaviour can be explained within a simple model of elastic tip-sample interaction. Both the topographic (AFM) images and the friction force or lateral force microscopy (LFM) images were simulated as a function of the scanning direction relative to the graphite lattice and as a function of the cantilever force constant. The scan distortions and the skipped area due to the AFM/LFM imaging process were evaluated. Simulations were performed both in the presence and in the absence of atomic-scale stick-slip processes. It is shown that neither stick-slip processes nor an inequivalence of the A- and B-sites of graphite is necessary to generate a hexagonal AFM image when scanning an atomic honeycomb structure. Rather, the simulations demonstrate that due to the two-dimensional elastic lateral displacement of the cantilever, the potential maxima - which correspond to the positions of the honeycomb lattice - are avoided by the scanning path of the tip apex, resulting in a hexagonal structure of the AFM and LFM images.© 1997 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...