ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 185-197 
    ISSN: 0887-6266
    Keywords: Poly(methyl methacrylate), mechanical deformation and positron annihilation study of ; aging of PMMA, structural and mechanical changes in ; glassy polymers, structural changes on aging of ; positron annihilation spectroscopy of PMMA ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The mechanical behavior of glassy polymers is time and temperature dependent as evidenced by their viscoelastic and viscoplastic response to loading. The behavior is also known to depend strongly on the prior history of the material, changing with time and temperature without chemical intervention. In this investigation, we examine the effects of this process of physical aging on the yield and postyield behavior and corresponding evolution in the structural state of glassy polymers. This has been achieved through a systematic program of uniaxial, isothermal, constant strain-rate tests on poly(methyl methacrylate) (PMMA) specimens of different thermal histories and by performing positron annihilation lifetime spectroscopy (PALS) measurements prior to and after mechanical deformation. PALS is an indicator of the free volume content, probing size and density of free volume sites and can be considered to be a measurement of structural state. The results of the mechanical tests show that aging acts to increase both the initial yield stress and the amount of strain softening which occurs subsequent to yield. Moreover, the amount of strain softening was found to be independent of strain rate indicating that softening is related to an evolution in structure as opposed to deformation kinetics. Furthermore, after sufficient inelastic straining, the initial thermal history is completely erased as evidenced by identical values of flow stress following strain softening, for both annealed and quenched polymer. Strong confirmation of the structural state or free volume related nature of the strain softening process is obtained by our companion PALS measurements. PALS detects an increase in the size of free volume sites following inelastic deformation and finds the initially annealed and quenched specimens to posses the same post-deformation distribution. The size of sites is found to evolve steadily with inelastic strain until it attains a steady-state value. This evolution of free volume with strain follows the observed softening of the flow stress to a steady-state value. These results provide experimental evidence that an increase in free volume with inelastic straining accompanies the strain softening phenomenon in glassy polymers and that strain softening is indeed a de-aging process. Based on our experimental results a mechanistically based constitutive model has been formulated to describe the effects of thermal history on the yield and postyield deformation behavior of glassy polymers up to moderate strains. The model is found to successfully capture the effects of physical aging, strain softening, strain rate, and temperature on the inelastic behavior of glassy polymers when compared with experimental results. © 1993 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...