ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-29
    Description: Abstract
    Description: This data publication provides data from 96 experiments from 2020 to 2022 in the gas-mixing lab at the Ludwig-Maximilians-Universität München (Germany). The experiments were conducted to investigate the influence of grain size distribution, especially the influence of very fines [〈10 µm] on the generation of experimental volcanic lightning (VL). The influence of grain size distribution was tested for three different materials. Experimental discharges during rapid decompression were evaluated by their number and their total magnitude. The three materials used in this study are a tholeiitic basalt (TB), industrial manufactured soda-lime glass beads (GB) and a phonolitic pumice from the lower Laacher See unit (LSB). The samples were sieved into several grain size fractions, and coarse and fines were mixed to test the influence of the added fines on the discharge behaviour. For the tholeiitic basalt, the coarse grain size fraction is 180-250 µm, for the glass beads 150-250 µm and for the phonolitic pumice, two coarse grain size fractions, 180-250 µm and 90-300 µm were tested. The experiments were carried out in a new experimental setup, a modification of the shock tube experiments first described by Alidibirov and Dingwell (1996) and its further modifications (Cimarelli et al., 2014; Gaudin & Cimarelli, 2019; Stern et al., 2019). A mixture of coarse and fine sample material is placed into an autoclave and continuously set under pressure with argon gas up to the desired decompression pressure (⁓10 MPa). Then, rapid decompression is initialized, and the sample material is ejected from the autoclave through a nozzle into a gas-tight particle collector tank. The particle collector tank is insulated from the nozzle and the ground and serves as a Faraday cage (FC). All discharges going from the erupting gas-particle mixture, the jet, to the nozzle will be recorded by a datalogger. All the discharges measured during the first 5 ms of ejection were taken into the evaluation of the discharge behaviour. The raw signals of the experiments were evaluated by a processing code developed by Gaudin and Cimarelli (2019). Additionally, the jet behaviour was recorded by a high-speed camera: the gas-exit angle and the exit angle of the gas-particle mixture were determined. The background of the high-speed video was divided into a black side and a white side. The gas-exit angle and the exit angle gas-particle-mixture were determined as the mean of the deviation angle of a straight trajectory angle of both sides.
    Keywords: ash ; electric charge ; Faraday cage ; shock-tube ; jet ; rapid decompression ; phonolite ; tholeiite ; glass beads ; EPOS ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC ELECTRICITY 〉 LIGHTNING ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC PHENOMENA 〉 LIGHTNING ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 VOLCANIC ERUPTIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 ASH/DUST DISPERSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 VOLCANIC EXPLOSIVITY ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 VOLCANIC ACTIVITY ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 WEATHER/CLIMATE ADVISORIES 〉 DUST/ASH ADVISORIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-27
    Description: Abstract
    Description: This data publication provides data from 39 experiments performed in 2021 to 2022 in the Gas-mixing lab at the Ludwig Maximilian University of Munich (Germany). The experiments were conducted to investigate the charging and discharging potential of decompressed soda-lime glass beads in varying enveloping gas composition and two different transporting gas species (argon and nitrogen). The experimental setup is a modified version of an apparatus first developed by Alidibirov and Dingwell (1996) and further modified by Cimarelli et al. (2014), Gaudin and Cimarelli (2019), and Stern et al. (2019) to enable the detection and quantification of discharges caused by the interaction of the discharging particles. The latest modifications enable the setup to perform experiments under gas-tight conditions allowing to test different atmospheric composition and pressure and to sample the gas within the particle collector tank. The sample material was ejected from the autoclave into the particle collector tank that is insulated from the autoclave and works as a Faraday cage. Discharges going from the jet to the nozzle were recorded by a datalogger. Additionally, the ejection of the decompressed material was recorded by a high-speed camera. The gas composition in the collector tank was changed from air to CO2 and a mixture of CO2 and CO. The particle collector tank was conditioned in two different modes: purging three times the tank with the desired gas composition or three times of purging and applying a vacuum in between. Analysis of gas samples taken from the collector tank before conducting the experiments revealed that in both cases a complete removal of the air was not achieved, but significantly reduced by the evacuation-purging method. Two gases were used to pressurize the sample within the autoclave: Nitrogen and Argon. The experimental results were compared to previous experiments (Springsklee et al., 2022a; Springsklee et al., 2022b).
    Keywords: ash ; electric charge ; Faraday cage ; shock-tube ; jet ; rapid decompression ; glass beads ; EPOS ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC ELECTRICITY 〉 LIGHTNING ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC PHENOMENA 〉 LIGHTNING ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 VOLCANIC ERUPTIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 ASH/DUST DISPERSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 VOLCANIC EXPLOSIVITY ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 VOLCANIC ACTIVITY ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 WEATHER/CLIMATE ADVISORIES 〉 DUST/ASH ADVISORIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...