ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • fast Fourier transform analysis  (1)
  • liquid flow velocity  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 536-544 
    ISSN: 0006-3592
    Keywords: biofilm ; streamers ; biofouling ; drag ; fast Fourier transform analysis ; hydrodynamics ; oscillations ; pressure drop ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mixed population biofilms consisting of Pseudomonas aeruginosa, P. fluorescens, and Klebsiella pneumoniae were grown in a flow cell under turbulent conditions with a water flow velocity of 18 cm/s (Reynolds number, Re, =1192). After 7 days the biofilms were patchy and consisted of cell clusters and streamers (filamentous structures attached to the downstream edge of the clusters) separated by interstitial channels. The cell clusters ranged in size from 25 to 750 μm in diameter. The largest clusters were approximately 85 μm thick. The streamers, which were up to 3 mm long, oscillated laterally in the flow. The motion of the streamers was recorded at various flow velocities up to 50.5 cm/s (Re 3351) using confocal scanning laser microscopy. The resulting time traces were evaluated by image analysis and fast Fourier transform analysis (FFT). The amplitude of the motion increased with flow velocity in a sigmoidal shaped curve, reaching a plateau at an average fluid flow velocity of approximately 25 cm/s (Re 1656). The motion of the streamers was possibly limited by the flexibility of the biofilm material. FFT indicated that the frequency of oscillation was directly proportional to the average flow velocity (u(ave)) below 9.5 cm/s (Re 629). At u(ave) greater than 9.5 cm/s, oscillation frequencies were above our measurable frequency range (0.12-6.7 Hz). The oscillation frequency was related to the flow velocity by the Strouhal relationship, suggesting that the oscillations were possibly caused by vortex shedding from the upstream biofilm clusters. A loss coefficient (k) was used to assess the influence of biofilm accumulation on pressure drop. The k across the flow cell colonized with biofilm was 2.2 times greater than the k across a clean flow cell. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 536-544, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: biofilm ; confocal scanning laser microscopy ; laminar flow ; liquid flow velocity ; mass transfer coefficient ; microelectrodes ; Reynolds number ; Sherwood number ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The relationship between local mass transfer coefficient and fluid velocity in heterogenous biofilms was investigated by combining microelectrodes and confocal scanning laser microscopy (CSLM). The biofilms were grown for up to 7 days and consisted of cell clusters separated by interstitial channels. Mass transfer coefficient depth profiles were measured at specific locations in the cell clusters and channels at average flow velocities of 2.3 and 4.0 cm/s. Liquid flow velocity profiles were measured in the same locations using a particle tracking technique. The velocity profiles showed that flow in the open channel was laminar. There was no flow at the top surface of the biofilm cell clusters but the mass transfer coefficient was 0.01 cm/s. At the same depth in a biofilm channel, the flow velocity was 0.3 cm/s and the mass transfer coefficient was 0.017 cm/s. The mass transfer coefficient profiles in the channels were not influenced by the surrounding cell clusters. Local flow velocities were correlated with local mass transfer coefficients using a semi-theoretical mass transfer equation. The relationship between the Sherwood number (Sh,) the Reynolds number (Re,) and the Schmidt number (Sc) was found using the experimental data to find the dimensionless empirical constants (n1, n2, and m) in the equation Sh = n1 + n2Rem Sc1/3. The values of the constants ranged from 1.45 to 2.0 for n1, 0.22 to 0.28 for n2, and 0.21 to 0.60 for m. These values were similar to literature values for mass transfer in porous media. The Sherwood number for the entire flow cell was 10 when the bulk flow velocity was 2.3 cm/s and 11 when the bulk flow velocity was 4.0 cm/s. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 681-688, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...