ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    The journal of membrane biology 94 (1986), S. 143-152 
    ISSN: 1432-1424
    Schlagwort(e): fluid secretion ; exocrine gland ; chloride transport
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Summary Sodium (22Na) transport was studied in a basolateral membrane vesicle preparation from rabbit parotid. Sodium uptake was markedly dependent on the presence of both K+ and Cl− in the extravesicular medium, being reduced 5 times when K+ was replaced by a nonphysiologic cation and 10 times when Cl− was replaced by a nonphysiologic anion. Sodium uptake was stimulated by gradients of either K+ or Cl− (relative to nongradient conditions) and could be driven against a sodium concentration gradient by a KCl gradient. No effect of membrane potentials on KCl-dependent sodium flux could be detected, indicating that this is an electroneutral process. A KCl-dependent component of sodium flux could also be demonstrated under equuilibrium exchange conditions, indicating a direct effect of K+ and Cl− on the sodium transport pathway. KCl-dependent sodium uptake exhibited a hyperbolic dependence on sodium concentration consistent with the existence of a single-transport system withK m =3.2mm at 80mm KCl and 23°C. Furosemide inhibited this transporter withK 0.5=2×10−4 m (23°C). When sodium uptake was measured as a function of potassium and chloride concentrations a hyperbolic dependence on [K] (Hill coefficient =1.31±0.07) were observed, consistent with a Na/K/Cl stoichiometry of 1∶1∶2. Taken together these data provide strong evidence for the electroneutral coupling of sodium and KCl movements in this preparation and strongly support the hypothesis that a Na+/K+/Cl− cotransport system thought to be associated with transepithelial chloride and water movements in many exocrine glands is present in the parotid acinar basolateral membrane.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    The journal of membrane biology 126 (1992), S. 183-193 
    ISSN: 1432-1424
    Schlagwort(e): Ca2+ entry ; membrane potential ; intracellular calcium mobilization ; fluid secretion ; exocrine gland
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Summary This study examines the effect of membrane potential on divalent cation entry in dispersed parotid acini following stimulation by the muscarinic agonist, carbachol, and during refill of the agonist-sensitive internal Ca2+ pool. Depolarizing conditions (addition of gramicidin to cells in Na+-containing medium or incubation of cells in medium with elevated [K+]) prevent carbachol-stimulated hyperpolarization of acini and also inhibit carbachol activation of Ca2+ and Mn2+ entry into these cells. Conditions promoting hyperpolarization (cells in medium with Na+ or with N-methyl-d-glucamine instead of Na+) enhance carbachol stimulation of divalent cation entry. Intracellular Ca2+ release (initial increase in [Ca2+] i ) does not appear to be affected by these manipulations. Mn2+ entry into resting and internal Ca2+ pooldepleted cells (10-min carbachol stimulation in a Ca2+-free medium) is similarly affected by membrane potential modulations, and refill of the internal pool by Ca2+ is inhibited by depolarization. The inhibitory effects of depolarization on divalent cation entry can be overcome by increasing extracellular [Ca2+] or [Mn2+]. These data demonstrate that the modulation of Ca2+ entry into parotid acini by membrane potential is most likely due to effects on the electrochemical gradient (E m — E Ca) for Ca2+ entry.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...