ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • free radical  (2)
  • exit  (1)
  • poly(hydroxyalkanoate)  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 1 (1993), S. 223-226 
    ISSN: 1572-8900
    Keywords: Emulsion polymerization ; poly(hydroxyalkanoate) ; latex ; biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Poly-(R)-3-hydroxyalkanoates (PHAs) are bacterial storage polyesters, which are accumulated by a wide variety of microorganisms as a reserve of carbon and energy. Currently, these biopolymers are receiving much attention because of their potential application as biodegradable and biocompatible plastics. The polymer appears as submicron intracellular granules. The biosynthesis of these granules has been studied extensively but many observations remain inexplicable. This paper draws an analogy between the process of emulsion polymerization and that of granule formation. This analogy may explain many of the unknown features of granule formation and may also lead to useful applications of granules as latex products.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-624X
    Keywords: emulsion polymerization ; isotachophoresis ; oligomer ; free radical ; aqueous phase ; styrene ; termination ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The concentrations and probable nature of charged oligomers formed by aqueous-phase termination in the persulfate-initiated emulsion polymerization of styrene were measured by isotachophoresis. Isotachophoresis has some advantages over other techniques (e.g., GPC, UV spectroscopy) in that it separates species according to their molecular weight, geometry, and charge. The charged water-soluble oligomeric species were detected in experiments in which particles were nucleated in a surfactant-free environment. Identification of the moieties present was made by comparison with model compounds. Evidence was found for bimolecular combination as a major mechanism of termination in the aqueous phase, although the possibility of disproportionation could not be ruled out. The species formed in the aqueous phase under saturated monomer conditions were found to be subject to further reaction towards the end of polymerization. The surface adsorption characteristics of the compounds formed were compared with those of known surfactants and showed good agreement with the assumptions in the model of Maxwell et. al. [Macromolecules, 24, 1629 (1991)] for initiator efficiencies in emulsion polymerization. The relatively large concentrations of nonradical aqueous-soluble oligomeric compounds demonstrate conclusively that initiator efficiencies are not 100%, as is often assumed in such systems. © 1993 John Wiley & Sons, Inc.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 32 (1994), S. 605-630 
    ISSN: 0887-624X
    Keywords: free radical ; exit ; emulsion ; polymerization ; model ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The exit or desorption of free radicals from latex particles is an important kinetic process in an emulsion polymerization. This article unites a successful theory of radical absorption (i.e., initiator efficiency), based on propagation in the aqueous phase being the rate determining step for entry of charged free radicals, with a detailed model of radical desorption. The result is a kinetic scheme applicable to true “zero-one” systems (i.e., where entry of a radical into a latex particle already containing a radical results in instantaneous termination), which is still, with a number of generally applicable assumptions, relatively simple. Indeed, in many physically reasonable limits, the kinetic representation reduces to a single rate equation. Specific experimental techniques of particular significance and methods of analysis of kinetic data are detailed and discussed. A methodology for both assessing the applicability of the model and its more probable limits, via use of known rate coefficients and theoretical predictions, is outlined and then applied to the representative monomers, styrene and methyl methacrylate. A detailed application of the theory and illustration of the methodology of model discrimination via experiment is contained in the second article of this series. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...