ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2023-07-19
    Description: Since high‐pressure devices have been used at synchrotron facilities, accurate determination of pressure and temperature in the sample has been a crucial objective, particularly for experiments that simulate the Earth's interior. However, in some cases using a thermocouple may have a high likelihood of failure or is incompatible with a high‐pressure assembly. To address these challenges and similar issues, we aim to expand a previously proposed solution: to jointly estimate pressure and temperature (〈italic〉PT〈/italic〉) through 〈italic〉in situ〈/italic〉 X‐ray diffraction, to cover a wider range of internal 〈italic〉PT〈/italic〉 calibrants tested over larger 〈italic〉PT〈/italic〉 ranges. A modifiable Python‐based software is offered to quickly obtain results. To achieve these aims, 〈italic〉in situ〈/italic〉 large volume press experiments are performed on pellets of intimately mixed powders of a halide (NaCl, KCl, KBr, CsCl) or MgO and a metal (Pt, Re, Mo, W, Ni) in the pressure range 3–11 GPa and temperature range 300–1800 K. Although the pressure range was chosen for practical reasons, it also covers an equally important depth range in the Earth (down to 350 km) for geoscience studies. A thermocouple was used to validate the 〈italic〉PT〈/italic〉 conditions in the cell assemblies. The key results show that choosing the appropriate calibrant materials and using a joint 〈italic〉PT〈/italic〉 estimation can yield surprisingly small uncertainties (〈italic〉i.e.〈/italic〉 〈±0.1 GPa and 〈±50 K). This development is expected to benefit current and future research at extreme conditions, as other materials with high compressibility or high thermal pressure, stable over large 〈italic〉PT〈/italic〉 ranges, may be discovered and used as 〈italic〉PT〈/italic〉 calibrants.〈/p〉
    Description: Research in high‐pressure devices, such as the diamond anvil cell and the large volume press, requires knowledge of the pressure and temperature in the sample. Here, a large volume press and an internal resistive heater were used to generate high load and heat to various combinations of intimately mixed powders of materials. X‐ray diffraction and custom software were used to jointly estimate the pressures and temperatures in the samples and establish calibrants for 〈italic〉in situ〈/italic〉 experiments at extreme conditions.〈boxed-text position="anchor" content-type="graphic" xml:lang="en"〉〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:16005775:jsy2vl5008:jsy2vl5008-fig-0001"〉
    Description: https://gitlab.desy.de/robert.farla/eoscross
    Keywords: ddc:548 ; equations of state ; X‐ray diffraction ; large volume press ; high pressure ; resistive heating
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...