ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • enantiomeric purity  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 7 (1995), S. 434-438 
    ISSN: 0899-0042
    Keywords: chiral HPLC ; resolution ; enantiomeric purity ; GABAA receptor affinity ; GABAA agonist ; benzodiazepine stimulation ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: (3SR,4RS)-3,4-Epoxypiperidine-4-carboxylic acid (isoguvacine oxide) is a potent and specific GABAA receptor agonist. Isoguvacine oxide, originally designed as a potentially alkylating agonist, turned out to interact with the GABAA receptor in a fully reversible manner. The protected form of isoguvacine oxide, benzyl (3SR,4RS)-1-(benzyloxycarbonyl)-3,4-epoxypiperidine-4-carboxylate (1) (Scheme 1), has now been resolved by chiral chromatography using cellulose triacetate as a chiral stationary phase. The enantiomers of 1 (ee ≥ 98.8%) were subsequently deprotected by hydrogenolysis. Whereas both enantiomers of isoguvacine oxide were inactive as inhibitors of the binding of [3H]GABA to GABAB receptor sites (IC50 〉 100 μM), (+)-isoguvacine oxide (IC50 = 0.20 ± 0.03 μM) and (-)-isoguvacine oxide (IC50 = 0.32 ± 0.05 μM) showed comparable potencies as inhibitors of the binding of [3H]GABA to GABAA receptor sites. Furthermore, (+)-isoguvacine oxide (EC50 = 6 μM; 33% relative efficacy) and (-)-isoguvacine oxide (EC50 = 5 μM; 38% efficacy relative to 10 μM muscimol) were approximately equipotent and equiefficacious as stimulators of the binding of [3H]diazepam to the GABAA receptor-associated benzodiazepine site. This latter effect is an in vitro estimate of GABAA agonist efficacy. These pharmacological data for isoguvacine oxide and its enantiomers do not seem to support our earlier conception of the topography of the GABAA recognition site(s), derived from extensive structure - activity studies on GABAA agonists. Thus, the model of the GABAA recognition site(s) comprising a narrow cleft or pocket, in which the anionic moiety of the zwitterionic GABAA agonists is assumed to be embedded during receptor activation, may have to be revised. © 1995 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...