ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 19 (1998), S. 1030-1038 
    ISSN: 0192-8651
    Keywords: pseudospectral ; parallel ; localized Møller-Plesset, scalable ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We have developed a parallel version of our pseudospectral localized Møller-Plesset electronic structure code. We present timings for molecules up to 1010 basis functions and parallel speedup for molecules in the range of 260-658 basis functions. We demonstrate that the code is scalable; that is, a larger number of nodes can be efficiently utilized as the size of the molecule increases. By taking advantage of the available distributed memory and disk space of a scalable parallel computer, the parallel code can calculate LMP2 energies of molecules too large to be done on workstations.   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 1030-1038, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 18 (1997), S. 1591-1608 
    ISSN: 0192-8651
    Keywords: dielectric continuum ; Poisson-Boltzmann equation ; finite element ; electrostatics ; solvation ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The automatic three-dimensional mesh generation system for molecular geometries developed in our laboratory is used to solve the Poisson-Boltzmann equation numerically using a finite element method. For a number of different systems, the results are found to be in good agreement with those obtained in finite difference calculations using the DelPhi program as well as with those from boundary element calculations using our triangulated molecular surface. The overall scaling of the method is found to be approximately linear in the number of atoms in the system. The finite element mesh structure can be exploited to compute the gradient of the polarization energy in 10-20% of the time required to solve the equation itself. The resulting timings for the larger systems considered indicate that energies and gradients can be obtained in about half the time required for a finite difference solution to the equation. The development of a multilevel version of the algorithm as well as future applications to structure optimization using molecular mechanics force fields are also discussed.   © 1997 John Wiley & Sons, Inc.   J Comput Chem 18: 1591-1608, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 19 (1998), S. 1017-1029 
    ISSN: 0192-8651
    Keywords: pseudospectral ; parallel ; Hartree-Fock ; gradient ; scalable ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We present an outline of the parallel implementation of our pseudospectral electronic structure program, Jaguar, including the algorithm and timings for the Hartree-Fock and analytic gradient portions of the program. We also present the parallel algorithm and timings for our Lanczos eigenvector refinement code and demonstrate that its performance is superior to the ScaLAPACK diagonalization routines. The overall efficiency of our code increases as the size of the calculation is increased, demonstrating actual as well as theoretical scalability. For our largest test system, alanine pentapeptide [818 basis functions in the cc-pVTZ(-f) basis set], our Fock matrix assembly procedure has an efficiency of nearly 90% on a 16-processor SP2 partition. The SCF portion for this case (including eigenvector refinement) has an overall efficiency of 87% on a partition of 8 processors and 74% on a partition of 16 processors. Finally, our parallel gradient calculations have a parallel efficiency of 84% on 8 processors for porphine (430 basis functions).   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 1017-1029, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...