ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8900
    Keywords: PHB ; depolymerase ; bacterial ; enzyme
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract As a complement to previous studies of the enzymatic degradation of folded chain lamellar single crystals of polyhydroxyalkanoates, single crystals of a number of polyhydroxyalkanoates were partially degraded with depolymerases from Pseudomonas lemoignei and examined by transmission electron microscopy. Single crystals of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate), bacterial poly(3-hydroxyvalerate), and synthetic poly(3-hydroxybutyrate) with 88% isotactic diads were degraded using purified extracellular PHA-depolymerases from P. lemoignei: PHB-depolymerase A, PHB-depolymerase B, and depolymerases from recombinant E. coli: PHB-depolymerase PhaZ4 (PHB-depolymerase E), PHB-depolymerase PhaZl (PHB-depolymerase C), and PHB-depolymerase PhaZ5 (PHB-depolymerase A). In contrast to previous results with single crystals of bacterial PHB, the predominant effect observed with all crystals was a significant narrowing of the lamellae. This suggests an edge attack mechanism which because of lateral disorder of the crystals leads to a narrowing of the crystalline lamellae as opposed to the splintering effect previously observed. The model suggested for the degradation of single crystals of bacterial PHB by PHB-depolymerases is refined to include the effects of lateral disorder caused by the introduction of valerate or repeat units of opposite stereochemistry into the single crystal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of polymers and the environment 1 (1993), S. 89-98 
    ISSN: 1572-8900
    Keywords: Poly([R,S] β-hydroxybutyrate) ; Alcaligenes faecalis T1 ; trimethyl aluminum ; β-butyrolactone ; enzymatic degradation ; depolymerase ; biodegradable
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The synthetic analogue of a bacterially produced polyester, poly(β-hydroxybutyrate) (PHB) was synthesized from racemic β-butyrolactone using anin situ trimethyl aluminum-water catalyst. The polymer was fractionated into samples differing in molecular weight and isotactic diad content. The latter was closely related to degree of crystallinity. The biodegradation of these fractions were examined by monitoring mass loss over time in the presence of anAlcaligenes faecalis T1 extracellular bacterial poly(β-hydroxybutyrate) depolymerase. The fraction with high isotactic diad tacticity content showed little or no degradation over a 50 hour incubation period, whereas the fraction of intermediate isotactic diad content degraded in a continuous steady fashion at a rate that was less than that for bacterial PHB. The low isotactic diad fraction underwent a rapid initial degradation, followed by no further mass loss. The presence of stereoblocks in the polymer structure of the various fractions was an influence on the degree of susceptibility towards degradation and is related to sample crystallinity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...