ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • degradation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of inorganic and organometallic polymers and materials 5 (1995), S. 135-153 
    ISSN: 1572-8870
    Keywords: Poly[bis(ethylamino)phosphazene] ; degradation ; hydrolysis ; solution viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Three polymers of poly[bis(ethylamino)phosphazene] (PBEAP) containing different amounts of the residual P−Cl moieties, which had been hydrolyzed into P OH in the following sample purification processes, were prepared by substitution of the chlorines on poly(dichlorophosphazene) with ethylamine. Only the polymer which had the highest side-chain content of ethylamino groups (ca. 93°o) had a film-forming ability and a crystalline nature. The hydrolytic degradation of PBEAP in acidic solutions was investigated using the solution viscosity data obtained as a function of standing time. Acetic acid, 0.5 and 1N, pure acetic acid, and 2.2.2-trifluoroethanol were used as solvents. The degradation was composed of random breaking processes along the polymer chain, especially at the-N=P(OH)2-and-N=P(OH)(NHC2H5)-units, and an unzippering-like breaking process which was started at the chain ends produced by the former random breaking. The random breaking caused an abrupt decrease in viscosity at the beginning of the degradation, and on the contrary, the unzippering-like breaking appeared as a gradual decrease in viscosity at the later stages of degradation. The total rate of degradation depended on the concentration of the ethylamino groups.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...